Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9143-9151    https://doi.org/10.11896/cldb.18120076
  金属与金属基复合材料 |
等离子弧粉末堆焊熔覆材料的研究现状与进展
魏仕勇1,2, 彭文屹1, 陈斌1, 赵文超1, 周颖钰1, 邓晓华3
1 南昌大学材料科学与工程学院,南昌 330031
2 江西省科学院应用物理研究所,南昌 330090
3 南昌大学空间科学与技术研究院,南昌 330031
Current Status and Progress of Cladding Materials for Plasma Arc Powder Surfacing
WEI Shiyong1,2, PENG Wenyi1, CHEN Bin1, ZHAO Wenchao1, ZHOU Yingyu1, DENG Xiaohua3
1 Materials Science and Engineering College, Nanchang University, Nanchang 330031, China
2 Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330090, China
3 Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China
下载:  全 文 ( PDF ) ( 1985KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自工业化应用以来,等离子弧粉末堆焊技术便受到机械工程领域工作者的广泛关注,并在机械零部件修复与再制造、零部件表面强化等方面取得了令人鼓舞的效果。随着现代科学技术的发展,等离子弧粉末堆焊设备被不断优化与改进,其自动化和数控系统水平不断提高,工业应用也更加便捷和高效,但当前等离子熔覆材料还是以自熔性合金粉末为主,高性能的新型熔覆材料研究报道相对较少。如何挖掘等离子弧粉末堆焊新型设备的技术优点,开发出满足当前对高强度、高真空、高温、耐磨、耐蚀等特殊性能需要的熔覆材料,是堆焊熔覆材料工作者所面临的重大挑战。
近10年来,国内外的研究重点主要集中在自熔性合金粉末及其增强粉末的复合化设计,尽管已取得一些成果,但并未拓宽新的熔覆材料研究领域。最近几年,部分研究者开始将金属陶瓷基、纳米颗粒、自润滑、高熵合金等新型粉末作为熔覆材料,应用于等离子弧粉末堆焊的表面强化或修复中,但复合粉末选择原则、成分优化以及制备工艺等还有待进一步研究。除此之外,等离子粉末堆焊熔覆材料的研究尚缺乏一套系统的科学基础理论。
目前,国内外等离子熔覆材料体系主要有:(1)合金化自熔性复合材料,利用一些功能性元素的固溶强化、析出强化、弥散强化和细晶强化等作用,改善熔覆层的组织和性能;(2)增强化自熔性复合材料,利用金属陶瓷基颗粒增强效应,提高熔覆层的性能;(3)稀土掺杂自熔性复合材料,发挥稀土特有的化学活性,净化熔覆层组织;(4)金属基自润滑复合材料,以金属或合金作为基相,固体润滑剂作为分散相,形成金属基自润滑堆焊熔覆材料;(5)高熵合金复合材料,将五种或五种以上的金属粉末混合组成复合粉末,形成高熵合金堆焊熔覆材料体系。除此之外,还有铜基、钛基、铝基、锆基和纳米等堆焊熔覆材料,借助这些材料的某些特性,使堆焊层实现耐磨、耐腐蚀、减摩、抗高温、抗热氧化和生物相容性等功能。
本文介绍了等离子弧堆焊熔覆粉末材料设计应遵循的一般原则和成分优化的基本方法,归纳了堆焊熔覆层材料现有体系及其研究现状,分析了等离子弧堆焊熔覆材料存在的问题并展望了其发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏仕勇
彭文屹
陈斌
赵文超
周颖钰
邓晓华
关键词:  等离子弧粉末堆焊  材料设计与优化  正交分析  熔覆材料    
Abstract: Since the industrial application of plasma arc powder surfacing technology, it has been widely concerned in mechanical engineering all over the world, and has achieved encouraging results in the repair of mechanical parts and the surface life of components. With the development of modern science and technology, plasma arc powder surfacing equipment is continuously optimized and improved, and its automation, systemization and numerical control level are continuously improved, thus its industrial applications are more convenient and efficient. However, at present, it is given priority to self-fluxed alloy powder with researching of cladding materials, and a few high-performance new cladding materials have been reported. How to discover the technical advantages of the new equipment for plasma arc powder surfacing, and meet the needs of special performances for cladding material, such as high strength, high vacuum, high temperature, wear-resistant, corrosion-resistant, etc., which is big challenge for workers on surfacing welding cladding material.
In nearly a decade, the researcher focus at home and abroad is mainly concentrated on the compound design of self-fluxing alloy powder and its reinforced powder. Although some achievements have been achieved, it has not broadened the new research fields of cladding materials. In recent years, some researchers have begun to apply new powders, such as metal ceramic base, nano-particles, self-lubricating and high entropy alloys as cladding materials, which have been applied to the surface strengthening or repair of plasma arc powder surfacing, but the selection principle, composition optimization and preparation processes of composite powder need to be further research. In addition, it is lack of a set of systematic and scientific theory for the research of plasma powder surfacing welding cladding material.
At present, the domestic and international plasma cladding material systems mainly include: (1) alloying self-fluxed composite materials by adding some functional metal elements, which can improve the microstructure and properties of cladding layer by the solid solution strengthening, precipitation strengthening, dispersion strengthening and fine grain strengthening of added elements; (2) reinforced self-fluxed composite mate-rials by metal ceramic particles, which can improve the performance of cladding layer; (3) rare earth doped self-fluxed composite materials, which can purify the cladding layer microstructure by exerting the unique chemical activity of the rare earth; (4) metal-based self-lubricating composite materials, which consist of a metal or alloy as the base phase and a solid lubricant as the dispersed phase; (5) high entropy alloy compo-site materials, which mixed five or more metal powder. In addition, there are metal-based cladding materials, such as copper-based, zirconium-based, titanium-based, aluminum-based, and nano-based.With the help of some properties of these materials, the surfacing layer achieves functions such as wear resistance, corrosion resistance, anti-friction, high temperature resistance, oxidation resistance and biological compatibility.
This paper introduces the general design principle and basic composition optimization methods of cladding powder materials. The existing systems and research status of cladding materials are summarized and the problems of plasma arc surfacing welding cladding material are analyzed, and its developing trend of the surfacing welding cladding materials is prospected.
Key words:  plasma arc surfacing welding    design and optimization    orthogonal analysis    cladding material
                    发布日期:  2020-04-27
ZTFLH:  TG422  
基金资助: 国家自然科学基金(51861025);江西省重点研发计划项目(20171BBE50043)
通讯作者:  wenyi.peng@163.com   
作者简介:  魏仕勇,江西省科学院应用物理研究所副研究员。2003年6月本科毕业于南昌航空大学,获得工学学士学位,现为南昌大学材料科学与工程学院博士研究生,在彭文屹教授的指导下进行研究。目前主要从事金属材料及其表面改性的研究工作。近年来,在金属材料及其表面改性领域发表论文20余篇。
彭文屹,南昌大学材料科学与工程学院教授、博士研究生导师,江西省百千万人才(2009年)。教育部学位与研究生教育发展中心学位评审专家、国家自然基金委通讯评委、科技部国家中小企业创新基金评委等。第十三届国际材联亚洲材料大会(IUMRS-ICA2012)分会主席,中国机械工程学会会员。获江西省技术发明二等奖一项,科技进步三等奖一项。2006年于上海交通大学取得工学博士学位。
邓晓华,理学博士,教授,博士研究生导师, 教育部“长江学者奖励计划”特聘教授,国家杰出青年基金获得者,南昌大学副校长。国家自然科学基金委员会专家评审组成员。主持国家自然科学基金委重大项目,教育部科学技术研究重大项目,中奥国际合作项目,论文曾在国际著名期刊Nature,Science, Physics of Plasma,Journal of Plasma Physics等发表。
引用本文:    
魏仕勇, 彭文屹, 陈斌, 赵文超, 周颖钰, 邓晓华. 等离子弧粉末堆焊熔覆材料的研究现状与进展[J]. 材料导报, 2020, 34(9): 9143-9151.
WEI Shiyong, PENG Wenyi, CHEN Bin, ZHAO Wenchao, ZHOU Yingyu, DENG Xiaohua. Current Status and Progress of Cladding Materials for Plasma Arc Powder Surfacing. Materials Reports, 2020, 34(9): 9143-9151.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120076  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9143
1 Mehmetolu M T, Gauvin W H. Aiche Journal,2010,29(2),207.
2 Zhang S, Wang S, Wu C L, et al. Engineering Failure Analysis,2017,76,115.
3 Chen G Q, Fu X S, Wei Y H, et al. Surface & Coatings Technology,2013,228(228),S276.
4 Deng Dewei, Chen Rui, Zhang Hongchao. Joural of Mechanical Engineering,2013,49(7),106(in Chinese).
邓德伟,陈蕊,张洪潮.机械工程学报, 2013,49(7),106.
5 Srimath N, Murugan N. Procedia Engineering,2012,38(5),15.
6 Wolfe T B, Henein H. Canadian Metallurgical Quarterly,2015,54(3),328.
7 Ravichandran M, Sabarirajan N, Sathish T, et al. Applied Mechanics and Materials,2016,852,324.
8 JB/T 7744-2011. Alloy powder used plasma arc overlaying welding for valve sealing surface,2011(in Chinese).
JB/T 7744-2011.阀门密封面等离子弧堆焊用合金粉末,2011.
9 Fu L M. Plasma surfacing, Agricultural Press,China,1989(in Chinese).
傅立明.等离子堆焊,农业出版社,1989.
10 Song W L, Zhu B D, Zhang J, et al. Laser Technology,1998, 22(1),34(in Chinese).
宋武林,朱蓓蒂,张杰,等.激光技术,1998,22(1),34.
11 Li J R. Ceramic-metal composite materials, Metallurgical Industry Press,China,2004(in Chinese).
李荣久.陶瓷-金属复合材料,冶金工业出版社,2004.
12 Liu K Q,Xu Q,et al. The preparation and application of metal ceramic,Metallurgical Industry Press,China,2008(in Chinese).
刘开琪,徐强,等.金属陶瓷的制备与应用,冶金工业出版社,2008.
13 Chen K. Experimental design and analysis,Tsinghua University Press,China,2005 (in Chinese).
陈魁.试验设计与分析,清华大学出版社,2005.
14 Lu J b, Yao S, Lou S N, et al. Materials for Mechanical Engineering,2006,30(3),36(in Chinese).
鲁建波,姚舜,楼松年,等.机械工程材料,2006,30(3),36.
15 Dong L H, Zhu S, Xu B S, et al. Journal of Materials Protection,2004,37(7),7(in Chinese).
董丽虹,朱胜,徐滨士,等.材料保护,2004,37(7),7.
16 Dong S Y,Ma Y Z,Xu B S, et al. Material Review,2006,20(6),5(in Chinese).
董世运,马运哲,徐滨士,等.材料导报,2006,20(6),5.
17 Ulutan M, Koray Kiliçay,et al. Journal of Materials Processing Technology,2016, 236,26.
18 Buytoz S, Orhan A,Gur A K, et al. Arabian Journal for Science and Engineering,2013,38,2197.
19 Cao H T,Dong X P,Pan Z,et al. Materials and Design,2016,100,223.
20 Liu S, Song Z, Cui W, et al. Transactions of the China Welding Institution,2017,38(4),39.
21 Azimi G, Shamanian M, et al. Journal of Alloys and Compounds,2010,505(2),598.
22 Li G D, Li Z X, Yang J Y, et al. Hot Working Technology,2014(23),196(in Chinese).
李国栋,栗卓新,杨津瑜,等.热加工工艺,2014(23),196.
23 Liu Y, Zhang G S, Wei S Z, et al. Chinese Jouranl of Materials Research,2013(6),641(in Chinese).
刘跃,张国赏,魏世忠,等.材料研究学报,2013(6),641.
24 Deng X K, Zhang G J, Wang T, Ren S, et al. Surface & Coatings Technology,2018,350,480.
25 Luo Y, Lei Y, Gong C, et al. Journal of Materials Engineering,2015,43(1),59.
26 Luo H, Tang L L, Zhang Y B. Journal of Shandong Jianzhu University,2010,25(1),14.
27 Mei Z, Yan Y W, Cui K. Materials Letters,2003,57(3),175.
28 Deng X, Zhang G, Wang T, et al. Materials Characterization,2017,131,517.
29 Zhuang M, Li M, Wang J, et al. Journal of Materials Engineering & Performance,2017,26(12),6182.
30 Zhang D, Xue H, Wang K, et al. Rare Metal Materials & Engineering,2018,47(2),469.
31 Yuan Y, Li Z. Applied Surface Science,2017,423,225.
32 Sundaramoorthy R, Tong S X, Parekh D, et al. Wear,2017,s376-377(377),1720.
33 Celik Nuri O. Applied Surface Science,2013,274,334.
34 Liu Y F, Mu J S, Xu X Y, et al. Materials Science & Engineering A, 2007,458(1),366.
35 Shi K, Hu S, Zheng H. Surface & Coatings Technology, 2011, 206(6),1211.
36 Li M X, Liu J, Li D K. Transactions of Materials & Heat Treatment,2015,36(11),214.
37 Zhang H, Zou Y, Zou Z, et al. Journal of Alloys & Compounds,2015,622,62.
38 Rai P, Kim Y S, Kang S K, et al. Plasma Chemistry & Plasma Proces-sing,2012,32(2),211.
39 Huang Z, Hou Q, Wang P. Surface & Coatings Technology,2008,202(13),2993.
40 Si S H, Yu W P, Zhang L, et al. Materials for Mechanical Engineering,2015,39(8),94(in Chinese).
斯松华,于婉萍,张磊,等.机械工程材料,2015,39(8),94.
41 Acevedo-Davila J R, Munoz-Arroyo R, Hdz-García H M, et al. Acuum,2017,143,14.
42 Mishra S B, Chandra K,Prakash S. Surface & Coatings Technology,2013,216,23.
43 Khademinia S, Behzad M. Nano Letters,2015,5,101.
44 Kim S J, Woo Y B, Lee S J, et al. Japanese Journal of Applied Physics,2013,52(11S),11NJ09.
45 Camélia Demian, Alain Denoirjean, Lech Pawłowski, et al. Surface & Coatings Technology,2016,300,104.
46 Zhang D K, Xue H B, Wang K H, et al. Rare Metal Materials & Engineering,2018,47(2),469.
47 Hou Q Y, Wang J T. Surface & Coatings Technology,2010,204,2677.
48 Praveen K, Sivakumar S, Ananthapadmanabhan P V. Ceramics International,2018,44,6417.
49 Han Y, Wang Y J, Wang S R. Applied Mechanics & Materials,2014,470,108.
50 Liu Y F, Feng Z C, Pu F, et al. Surface & Coatings Technology,2018,345,61.
51 Skarvelis P, Papadimitriou G D. Surface & Coatings Technology,2009,203(10),1384.
52 Skarvelis P, Papadimitriou G D. Tribology International,2009,42(11),1765.
53 Wang Y H. Research of wear-resistant self-lubricating coating by plasma surfacing welding on titanium alloy surface. Master’s Thesis, Tianjin Polytechnic University, China,2016(in Chinese).
王永海.钛合金表面等离子堆焊耐磨自润滑涂层的研究.硕士学位论文,天津工业大学,2016.
54 He Q, Ding Z, Ye Y, et al. JOM, 2017, 69,2092.
55 Lu J B, Peng Z Q, Ma M X, et al. Heat Treatment of Metals,2016, 41(4),51(in Chinese).
卢金斌,彭竹琴,马明星,等.金属热处理,2016,41(4),51.
56 Cheng J B, Liang X B, Xu B S. Surface & Coatings Technology,2014,240(7),184.
57 Cheng J, Liu D, Liang X, et al. Surface & Coatings Technology,2015,281,109.
58 Leylavergne M, Chartier T, Denoirjean A, et al. Thin Solid Films,2001,391(1),1.
59 Liu Y F, Zhou Y L, et al. Journal of Alloys & Compounds,2014,591(591),251.
60 Deuis R L, Bee J V, Subramanian C. Scripta Materialia,1997,37(6),721.
61 Yugeswaran S, Kobayashi A, et al. Current Applied Physics,2011,11(6),1394.
62 Birol Y, Kayihan A B. Metallurgical & Materials Transactions A,2011,42(11),3277.
[1] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[2] 赵聪硕,邢志国,王海斗,李国禄,刘喆. 铁碳合金表面激光熔覆的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 418-426.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed