Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 81-85    https://doi.org/10.11896/j.issn.1005-023X.2017.06.017
  材料研究 |
钛合金压印接头疲劳性能与微观分析
张越, 何晓聪, 张龙, 张先炼
昆明理工大学机电工程学院, 昆明 650500
Fatigue Property and Microanalysis of Clinched Joints of Titanium Alloy
ZHANG Yue, HE Xiaocong, ZHANG Long, ZHANG Xianlian
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 1632KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压印连接是近年来新兴的连接方式,因其具有简单高效、低耗环保等优点,在连接应用方面越来越受到重视,而疲劳破坏是机械零件失效的主要形式。对钛合金压印接头的疲劳性能进行了实验研究,与母材的力学性能进行了对比分析,并对疲劳失效断口进行了断口分析和能谱分析。实验结果显示钛合金压印接头的平均拉伸-剪切强度约为同等尺寸材料拉伸-剪切强度的36.7%;钛合金压印接头的疲劳极限约为材料疲劳极限的46%,平均载荷约为接头最大静强度的42%。微观特征显示断口呈脆性疲劳断裂特征,由于微动磨损和氧化作用产生了成分为氧化钛的微动磨屑,且其硬度较高,因此在微动过程中起到磨粒的作用,从而加速了磨损和裂纹扩展,最终导致疲劳失效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张越
何晓聪
张龙
张先炼
关键词:  钛合金  压印连接  疲劳性能  微动磨损    
Abstract: Mechanical clinching is a widely used connection technology in different industrial fields. Because it has several advantages such as simple operating process, high efficiency and so forth. Fatigue damage is a main failure mode of the metal mechanical part. In this paper, tensile-shear tests and fatigue test were carried out to characterize the mechanical properties of the clinched joints of titanium alloy. The tensile-shear strength of the clinched joint of titanium alloy was about 36.7% of that of the material itself with equal size. The fatigue strength for titanium alloy sheets joined by clinching was about 46% of that of titanium alloy and about the average load was about 42% of the static strength of clinched joints. Microscopic characteristics showed that the fracture was brittle fatigue fracture. Fatigue abrasive dust with high hardness was produced due to the fretting wear and oxidation which acted as micro abrasive in the process of fretting wear. In this way, it accelerated the abrasion and crack propagation and eventually leaded to fatigue failure.
Key words:  titanium alloy    mechanical clinching    fatigue property    fretting wear
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG3  
基金资助: 国家自然科学基金(51565023);云南省教育厅科学研究基金重大专项(ZD201504);昆明理工大学分析测试基金(20130576)
通讯作者:  何晓聪:男,1955年生, 教授, 博士, 博士研究生导师,从事薄板材料连接新技术研究,E-mail:xiaocong_he@126.com   
作者简介:  张越:女,1990年生,博士研究生,主要研究方向为薄板材料连接新技术,E-mail:zhangyuely2009@126.com
引用本文:    
张越, 何晓聪, 张龙, 张先炼. 钛合金压印接头疲劳性能与微观分析[J]. 《材料导报》期刊社, 2017, 31(6): 81-85.
ZHANG Yue, HE Xiaocong, ZHANG Long, ZHANG Xianlian. Fatigue Property and Microanalysis of Clinched Joints of Titanium Alloy. Materials Reports, 2017, 31(6): 81-85.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.017  或          http://www.mater-rep.com/CN/Y2017/V31/I6/81
1 Xu T C, Peng X D, Jiang J W, et al. Study on application of new technology of dissimilar materials of titanium alloy connection [J]. Rare Met,2014(4):711(in Chinese).
许天才,彭晓东,姜军伟,等.钛合金连接异种材料新技术的研究应用[J].稀有金属,2014(4):711.
2 李亚江,王娟,刘强.有色金属焊接及应用[M]. 北京:化学工业出版社,2006.
3 He X C, Gu F S, Ball A. Fatigue behavior of fastening joints of sheet materials and finite element analysis[C]//International Conference on Solid State and Materials.Losangeles,2013.
4 Mucha J. The analysis of lock forming mechanism in the clinching joint [J]. Mater Des,2011,32(10):4943.
5 Luo X Y, Zhao R G,He W, et al. Analysis on low cycle fatigue properties and fractography of TC25 titanium alloy [J]. Acta Mech Solida Sin,2011(1):145(in Chinese).
罗希延,赵荣国,何伟,等.TC25钛合金低周疲劳特性与断口分析[J].固体力学学报,2011(1):145.
6 Lambiase F. Mechanical behavior of polymer-metal hybrid joints produced by clinching using different tools [J]. Mater Des,2015,87:606.
7 Lee C J, Kim J Y, Lee S K, et al. Parametric study on mechanical clinching process for joining aluminum alloy and high-strength steel sheets [J]. J Mater Process Technol,2010,24:123.
8 He X C, Zhao L, Yang H Y, et al. Investigations of strength and energy absorption of clinched joints[J]. Comput Mater Sci,2014,94:58.
9 He X C, Liu F L, Xing B Y, et al. Numerical and experimental investigations of extensible die clinching [J]. Int J Adv Manuf Tech-nol,2014,74:1229.
10 He X C, Zhang Y, Xing B Y, et al. Mechanical properties of extensible die clinched joints in titanium sheet materials [J]. Mater Des,2015,71:26.
11 Lambiase F. Damage analysis in mechanical clinching: Experimental and numerical study [J]. J Mater Process Technol,2016,230:109.
12 Eshtayeh M M, Hrairi M, Mohiuddin A K M. Clinching process for joining dissimilar materials: State of the art [J]. Int J Adv Manuf Technol,2016,82:179.
13 Mori K, Abe Y, Kato T. Mechanism of superiority of fatigue strength for aluminum alloy sheets joined by mechanical clinching and self-pierce riveting [J]. J Mater Process Technol,2012,212:1900.
14 Carboni M, Beretta S, Monno M. Fatigue behavior of tensile-shear loaded clinched joints [J]. Eng Fracture Mech,2006,73:178.
15 Abe Y, Kato T, Mori K. Mechanical clinching of ultra-high strength steel sheets and strength of joints [J]. J Mater Process Technol,2014,214:2112.
16 Yang H Y, He X C, Wang Y Q, et al. Tensile-shear and fatigue properties of clinched joint in cold rolled mild steel sheets [J]. Mech Des,2013,30(9):78(in Chinese).
杨慧艳,何晓聪,丁燕芳,等. 冷轧钢压印接头拉伸-剪切和疲劳性能研究[J].机械设计,2013,30(9):78.
17 Li H M, Song G, Liu Y Z. Estimating formula of fatigue limits for metallic materials [J].J Zhengzhou University: Eng Sci,2002(4):26(in Chinese).
李海梅,宋刚,刘永志.金属材料疲劳极限的估算[J].郑州大学学报:工学版,2002(4):26.
18 Ding S D, Yang G Z. Estimation of unsymmetrical cycle fatigue li-mits for titanium alloy smooth specimens [J]. J Mech Strength,2001(3):371(in Chinese).
丁遂栋,杨国战.钛合金光滑试样非对称循环疲劳极限的估算[J].机械强度,2001(3):371.
19 钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006:349.
20 何明鉴.机械构件的微动疲劳[M].北京:国防工业出版社,1994:225.
[1] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[2] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[3] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[4] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[5] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[6] 刘强, 惠松骁, 宋生印, 叶文君, 于洋. 油气开发用钛合金油井管选材及工况适用性研究进展[J]. 材料导报, 2019, 33(5): 841-853.
[7] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[8] 吕政桦, 申爱琴, 李悦, 郭寅川, 喻沐阳. 基于遗传优化的乳化沥青冷再生混合料的疲劳性能及机理研究[J]. 材料导报, 2019, 33(16): 2704-2709.
[9] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[10] 刘洋, 庄蔚敏, 施宏达. 自冲铆接头疲劳性能影响因素研究进展[J]. 材料导报, 2019, 33(11): 1825-1830.
[11] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[12] 姚罡, 付明杰. TNW700高温钛合金热过程中的相组织变化分析[J]. 材料导报, 2018, 32(20): 3584-3589.
[13] 缪倩倩, 陈海燕, 顾伟, 蒋永锋, 宋亓宁. 钛合金表面阳极微弧等离子体渗硼层的研究[J]. 材料导报, 2018, 32(18): 3161-3165.
[14] 王志远, 邢志国, 王海斗, 李国禄, 刘珂璟, 邢壮. 重载齿轮弯曲疲劳寿命测试方法研究现状[J]. 材料导报, 2018, 32(17): 3051-3059.
[15] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed