Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23040269-12    https://doi.org/10.11896/cldb.23040269
  先进有色金属材料加工及性能调控 |
梯度结构金属材料的制备方法和力学性能研究进展
高瑞泽1, 王亚强1,*, 张金钰1, 杨红艳2, 刘刚1, 孙军1
1 西安交通大学金属材料强度国家重点实验室,西安 710049
2 中国核动力研究设计院反应堆燃料及材料重点实验室,成都 610213
Progress in the Preparation Methods and Mechanical Properties of Gradient-Structured Metallic Materials
GAO Ruize1, WANG Yaqiang1,*, ZHANG Jinyu1, YANG Hongyan2, LIU Gang1, SUN Jun1
1 State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
下载:  全 文 ( PDF ) ( 26120KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属结构材料是保障国防建设、航空航天和机械工程等领域快速发展的物质基础,向其中引入梯度组织可以使不同尺寸的结构单元相互协调作用,突破单一均质材料的性能短板,有效改善金属材料的综合服役性能。本文围绕近几年国内外梯度结构金属材料的相关研究和进展,首先介绍了梯度结构金属材料的制备方法和工艺原理,并总结了其优点与局限性;其次对梯度金属材料的微观组织结构进行了阐释,论述了梯度结构金属材料的服役性能特点,包括强度、塑性、摩擦磨损性能、疲劳损伤性能和耐腐蚀性能,提出了调控梯度结构金属材料服役性能的优化策略;最后对其未来研究方向和面临的挑战进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高瑞泽
王亚强
张金钰
杨红艳
刘刚
孙军
关键词:  梯度结构金属材料  微观组织  制备方法  力学性能  疲劳性能  腐蚀性能    
Abstract: Structural metal materials are the foundation for guaranteeing the rapid development of national defense construction, aerospace, and mechanical engineering fields. Introducing the gradient microstructure into it could make the structural units with different size produce mutual coordination, breaking through the performance shortcomings of the homogeneous materials and effectively improving the comprehensive service properties of metal materials. Focused on the domestic and international investigations and progress of gradient-structured metal materials in recent years, this paper firstly introduced the preparation methods and the process principles with summarizing their advantages and limitations for gradient-structured metals. Then, the microstructure of gradient-structured metals was analyzed, and the characteristics of service performance were discussed, including the strength, plasticity, friction and wear property, fatigue damage performance and corrosion resistance. Moreover, some optimization strategies were proposed for manipulating the service performance of gradient-structured materials. Finally, the development of future research direction and the faced challenges were prospected.
Key words:  gradient-structured metallic material    microstructure    preparation method    mechanical property    fatigue property    corrosion resistance
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TB383  
基金资助: 国家自然科学基金(92163201;U2067219;52001247);陕西省青年创新团队科研计划项目(22JP042);陕西省青年创新团队科研计划项目(22JP042);陕西省科技创新团队项目(2024RS-CXTD-58)
通讯作者:  * 王亚强,西安交通大学材料科学与工程学院副教授、硕士研究生导师。2012年西安交通大学材料科学与工程专业本科毕业,2019年西安交通大学材料学专业博士毕业后留校工作至今。目前主要从事纳米金属薄膜/多层膜强韧化、高性能核燃料包壳涂层材料研发等方面的研究工作。发表SCI论文60余篇,包括Acta Materialia、 Advanced Materials、 Scripta Materialia、 Materials Research Letters等。yaqiangwang@xjtu.edu.cn   
作者简介:  高瑞泽,2022年6月于南京航空航天大学获得工学学士学位。现为西安交通大学材料科学与工程学院硕士研究生。目前主要研究领域为高熵合金多层膜材料。
引用本文:    
高瑞泽, 王亚强, 张金钰, 杨红艳, 刘刚, 孙军. 梯度结构金属材料的制备方法和力学性能研究进展[J]. 材料导报, 2024, 38(15): 23040269-12.
GAO Ruize, WANG Yaqiang, ZHANG Jinyu, YANG Hongyan, LIU Gang, SUN Jun. Progress in the Preparation Methods and Mechanical Properties of Gradient-Structured Metallic Materials. Materials Reports, 2024, 38(15): 23040269-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040269  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23040269
1 Cao P. Nano Letters, 2020, 20(2), 1440.
2 Yang H, Lavernia E J, Schoenung J M. Philosophical Magazine Letters, 2015, 95(3), 177.
3 Embury D, Bouaziz O. Annual Review of Materials Research, 2010, 40(1), 213.
4 Koch C C, Morris D G, Lu K, et al. Mrs Bulletin, 1999, 24(2), 54.
5 Lu K. Science, 2010, 328(5976), 319.
6 Li Y. Materials China. 2016, 35(9), 658(in Chinese).
李毅. 中国材料进展, 2016, 35(9), 658.
7 Cheng Z, Zhou H, Lu Q, et al. Science, 2018, 362(6414), eaau1925.
8 Wang Y F, Huang C X, Wang M S, et al. Scripta Materialia, 2018, 150, 22.
9 Li X, Lu L, Li J, et al. Nature Reviews Materials, 2020, 5(9), 706.
10 Fang T H, Li W L, Tao N R, et al. Science, 2011, 331(6024), 1587.
11 Yan J H, Du Y F, Feng Y L. Journal of Plasticity Engineering, 2022, 29(5), 13 (in Chinese).
闫佳鹤, 杜一飞, 冯运莉. 塑性工程学报, 2022, 29(5), 13.
12 Lee H H, Yoon J I, Park H K, et al. Acta Materialia, 2019, 166, 638.
13 Wu S W, Wang G, Wang Q, et al. Acta Materialia, 2019, 165, 444.
14 Lu K. Nature Reviews Materials, 2016, 1(5), 1.
15 Suresh S. Science, 2001, 292(5526), 2447.
16 He X M, Zhu X Y, Dong J, et al. Hot Working Technology, 2009, 38(22), 56 (in Chinese).
何晓梅, 朱晓雅, 董洁, 等. 热加工工艺, 2009, 38(22), 56.
17 Zhang Q X, Yang X C, Li C J. Hot Working Technology, 2016, 45(2), 3 (in Chinese).
张淇萱, 杨新诚, 李才巨. 热加工工艺, 2016, 45(2), 3.
18 Zhou X, Li X Y, Lu K. Scripta Materialia, 2018, 153, 6.
19 Fang T H, Li W L, Tao N R, et al. Science, 2011, 331(6024), 1587.
20 Lu K, Lu J. Journal of Materials Science & Technology , 1999(3), 5.
21 Li X, Lu L, Li J, et al. Nature Reviews Materials, 2020, 5(9), 706.
22 Lu K. Acta Metallurgica Sinica, 2015, 51(1), 1 (in Chinese).
卢柯. 梯度纳米结构材料. 金属学报, 2015, 51(1), 1.
23 Chui P, Sun K, Sun C, et al. Materials & Design, 2012, 35, 754.
24 Li J, Weng G J, Chen S, et al. International Journal of Plasticity, 2017, 88, 89.
25 Yang K, Zhao J F, He F, et al. Surface Technology, 2022, 51(11), 58 (in Chinese).
杨康, 赵建锋, 何风, 等. 表面技术, 2022, 51(11), 58.
26 Chen A, Wang C, Jiang J, et al. Nanomaterials, 2021, 11(6), 1624.
27 Qin Z, Li B, Zhang H, et al. Aeronautical Manufacturing Technology, 2022, 65(15), 41 (in Chinese).
秦志, 李斌, 张涵, 等. 航空制造技术, 2022, 65(15), 41.
28 Liu X C, Zhang H W, Lu K. Scripta Materialia, 2015, 95, 54.
29 Xu W, Liu X C, Lu K. Acta Materialia, 2018, 152, 138.
30 Tu T, Tian J, Li J Z, et al. Foundry Technology, 2022(2), 43 (in Chinese).
屠涛, 田军, 李积珍, 等. 铸造技术, 2022(2), 43.
31 Han K, Li X, Liu X, et al. Materials Science and Engineering: A, 2022, 832, 142391.
32 Nalla R K, Altenberger I, Noster U, et al. Materials Science and Engineering: A, 2003, 355(1-2), 216.
33 Dong G S, Gao B, Wang Z B. International Journal of Fatigue, 2023, 168, 107425.
34 Carneiro L, Wang X, Jiang Y. International Journal of Fatigue, 2020, 134, 105469.
35 Huang H W, Wang Z B, Lu J, et al. Acta Materialia, 2015, 87, 150.
36 Gu J, Guo L, Gan B, et al. Materials Science and Engineering: A, 2021, 802, 140676.
37 Yang L, Chen Z, Ma X, et al. Materials Science and Engineering: A, 2021, 826, 141980.
38 Ding Z, Yuan Q, Wang H, et al. Ceramics International, 2023, 49(1), 154.
39 Li J, Lu W, Gibson J, et al. Scientific Reports, 2018, 8(1), 1.
40 Bathini L, Prasad M, Wasekar N P. Surface and Coatings Technology, 2022, 445, 128728.
41 Zhang Z, Xu Z, Liao Z, et al. Materials Letters, 2022, 312, 131681.
42 Cui C, Wang X M, Wu B, et al. Aeronautical Manufacturing Technology, 2018, 61(10), 74 (in Chinese).
崔灿, 王向明, 吴斌, 等. 航空制造技术, 2018, 61(10), 74.
43 He B, Shao Z C, Sun C Q. Hot Working Technology, 2021(22), 050 (in Chinese).
何波, 邵志诚, 孙长青. 热加工工艺, 2021(22), 050.
44 Qin L Y, Wang W, Yang G, et al. Functional Materials, 2013, 44(B06), 94 (in Chinese).
钦兰云, 王维, 杨光, 等. 功能材料, 2013, 44(B06), 94.
45 Lou S, Li Y, Zhou L, et al. Materials & Design, 2016, 104, 320.
46 Lainé S J, Knowles K M, Doorbar P J, et al. Acta Materialia, 2017, 123, 350.
47 Ren X D, Zhou W F, Liu F F, et al. Applied Surface Science, 2016, 363, 44.
48 He D, Li L, Zhang Y, et al. Journal of Alloys and Compounds, 2023, 935, 168139.
49 Lv L Q, Wang Y C, Li H, et al. Metallurgical Engineering, 2015, 2(2), 98.
50 Azushima A, Kopp R, Korhonen A, et al. CIRP Annals, 2008, 57(2), 716.
51 Wei L J, Yang S Z, Xia W J, et al. Journal of Mechanical Engineering Materials, 2012, 36(11), 14 (in Chinese).
魏琳俊, 杨寿智, 夏伟军, 等. 机械工程材料, 2012, 36(11), 14.
52 Ma X, Huang C, Moering J, et al. Acta Materialia, 2016, 116, 43.
53 Zhang L, Chen Z, Wang Y, et al. Scripta Materialia, 2017, 141, 111.
54 Zhao S, Kad B, Wehrenberg C E, et al. Proceedings of the National Academy of Sciences, 2017, 114(37), 9791.
55 Li X D. Microstructure design and strengthening-toughening mechanism of multiscale-structured alloys. Master’s Thesis, North China University of Science and Technology, China, 2020 (in Chinese).
李旭东. 合金多尺度微观结构设计与强韧化机理研究. 硕士学位论文, 华北理工大学, 2020.
56 Li X, Liu Y, Cui Y, et al. Journal of Alloys and Compounds, 2023, 955, 170053.
57 Hu J, Gao H, Meng Y, et al. Materials Science and Engineering: A, 2018, 726, 215.
58 Tripathi A, Tewari A, Kanjarla A K, et al. Metallurgical and Materials Transactions A, 2016, 47, 2201.
59 Lin T, Chang T, Xie Q, et al. Materials Characterization, 2022, 191, 112114.
60 Lei Y B, Wang Z B, Zhang B, et al. Acta Materialia, 2021, 208, 116773.
61 Lu K. Science, 2014, 345(6203), 1455.
62 Chen Z G, Wu Y L, Xue Q X, et al. Surface Technology, 2022, 51(7), 343 (in Chinese).
陈正阁, 武永丽, 薛全喜, 等. 表面技术, 2022, 51(7), 343.
63 Li X, Nakatani M, Yang J, et al. Journal of Alloys and Compounds, 2022, 890, 161835.
64 Shi Y, Wang Y, Shang W, et al. Materials Science and Engineering:A, 2021, 811, 141053.
65 Zhu Y, Wu X. Materials Research Letters, 2019, 7(10), 393.
66 Wang Y F, Huang C X, Fang X T, et al. Scripta Materialia, 2020, 174, 19.
67 Zhang X, Jia Z, Liu T, et al. Materials Science and Engineering:A, 2022, 860, 144268.
68 Lu J Z, Duan H F, Luo K Y, et al. Journal of Alloys and Compounds, 2017, 698, 633.
69 Sun Q, Sun J, Fu Y, et al. Materials, 2022, 15(21), 7687.
70 Wu X L, Jiang P, Chen L, et al. Materials Research Letters, 2014, 2(4), 185.
71 Zhao J, Lu X, Yuan F, et al. International Journal of Plasticity, 2020, 125, 314.
72 Martínez-Paeda E, Deshpande V S, Niordson C F, et al. Journal of the Mechanics and Physics of Solids, 2019, 126, 136.
73 Wu X L, Jiang P, Chen L, et al. Proceedings of the National Academy of Sciences, 2014, 111(20), 7197.
74 Zhang Z, Sheng H, Wang Z, et al. Nature Communications, 2017, 8(1), 14390.
75 Chen X, Han Z, Li X, et al. Science Advances, 2016, 2(12), e1601942.
76 Du X H, Li W P, Chang H T, et al. Nature Communications, 2020, 11(1), 2390.
77 Yang X, Zhang J, Gong Y, et al. Materials Science and Engineering: A, 2020, 789, 139619.
78 Bernoulli D, Cao S C, Lu J, et al. Surface and Coatings Technology, 2018, 339, 14.
79 Zheng L Q, Principles of tribology, Higher Education Press, China, 1994, pp. 371 (in Chinese).
郑林庆. 摩擦学原理, 高等教育出版社, 1994, pp. 371.
80 Zhao K, Aghababaei R. Journal of the Mechanics and Physics of Solids, 2020, 143, 104069.
81 Wang H, Gee M, Qiu Q, et al. Journal of Materials Science & Technology, 2019, 35(11), 2435.
82 Konyashin I, Ries B. Materials Letters, 2019, 253, 128.
83 Wang Z B, Lu J, Lu K. Surface and Coatings Technology, 2006, 201(6), 2796.
84 Lv X R, Wang S G, Liu Y, et al. Wear, 2008, 264(7-8), 535.
85 Zhang Y S, Han Z, Wang K, et al. Wear, 2006, 260(9-10), 942.
86 Zhou L, Liu G, Han Z, et al. Scripta Materialia, 2008, 58(6), 445.
87 Pandey V, Chattopadhyay K, Srinivas N C S, et al. Procedia Structural Integrity, 2016, 2, 3288.
88 Roland T, Retraint D, Lu K, et al. Scripta Materialia, 2006, 54(11), 1949.
89 Ho H S, Lv C, Zhou W, et al. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(6), 1818.
90 Liu Z, Zhang H, Yan Z, et al. Materials Science and Engineering:A, 2021, 822, 141669.
91 Li X, Sun B H, Guan B, et al. International Journal of Fatigue, 2021, 146, 106142.
92 Pan Q, Lu L. Scripta Materialia, 2020, 187, 301.
93 Lv J L, Luo H Y. Surface and Coatings Technology, 2013, 235, 513.
94 Lei J I N, Cui W, Xiu S, et al. Transactions of Nonferrous Metals Society of China, 2014, 24(8), 2529.
95 Feng B, Yan C, Feng X, et al. Materials Research Express, 2020, 7(10), 106511.
96 Shen P, Zhang B, Li Z, et al. Journal of Alloys and Compounds, 2023, 933, 167800.
97 Sun Q, He J, Chen J, et al. npj Materials Degradation, 2022, 6(1), 64.
98 Liu X, Sun W, Dong Y, et al. Journal of Materials Research, 2019, 34(6), 1064.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[11] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[12] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[13] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[14] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[15] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed