Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 76-80    https://doi.org/10.11896/j.issn.1005-023X.2017.06.016
  材料研究 |
Ni、Si元素配比对Cu-Cr-Zr合金组织与性能的影响
周清泉, 帅歌旺, 刘建彬
南昌航空大学航空制造工程学院, 南昌 330063
Effect of Ni and Si Mass Ratio on Microstructure and Properties of Cu-Cr-Zr Alloy
ZHOU Qingquan, SHUAI Gewang, LIU Jianbin
College of Aviation Manufacturing Engineering,Nanchang Hangkong University, Nanchang 330063
下载:  全 文 ( PDF ) ( 1770KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在Cu-Cr-Zr合金中添加Ni、Si元素,制备Cu-0.6Cr-0.15Zr、Cu-2.8Ni-0.7Si-0.6Cr-0.15Zr(w(Ni)/w(Si)=4∶1)、Cu-2.8Ni-0.9Si-0.6Cr-0.15Zr(w(Ni)/w(Si)<4∶1)、Cu-2.8Ni-0.56Si-0.6Cr-0.15Zr(w(Ni)/w(Si)>4∶1)共4种合金。研究了Ni、Si元素及其配比对合金组织及性能的影响。结果表明:Ni、Si元素细化了合金组织,增强了合金高温力学性能。合金时效初期先析出CrSi2化合物,时效后期析出相颗粒主要有CrSi2、Ni2Si、ZrCrSi2,形态为长条形、椭圆形及圆盘状。时效处理后,与Cu-0.6Cr-0.15Zr合金相比,加入Ni、Si元素后合金硬度从131HV上升到240HV以上;导电率从88%IACS左右降到40%IACS左右。Ni、Si元素配比对导电率的峰值影响有限,在4%IACS~9%IACS;对硬度峰值的影响在20HV~30HV之间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周清泉
帅歌旺
刘建彬
关键词:  Cu-Ni-Si-Cr-Zr合金  导电率  硬度    
Abstract: Ni and Si were added in Cu-Cr-Zr alloy to prepare Cu-0.6Cr-0.15Zr, Cu-2.8Ni-0.7Si-0.6Cr-0.15Zr (w(Ni)/w(Si)=4∶1), Cu-2.8Ni-0.9Si-0.6Cr-0.15Zr (w(Ni)/w(Si)<4∶1) and Cu-2.8Ni-0.56Si-0.6Cr-0.15Zr (w(Ni)/w(Si) > 4∶1) four kinds of alloy. The influence of Ni, Si and their mass ratio on the microstructure and properties of the alloy were studied. The results indicated that Si and Ni could refine the microstructure of the alloy and enhance the mechanical properties of the alloy at high temperature. In the early aging stage, the CrSi2 phase was precipitated, and CrSi2, Ni2Si, ZrCrSi2 phases were precipitated at the later aging stage, with elongated, oval and round shapes. After aging treatment, the addition of Ni,Si elements resulted in an increase of the alloy′s hardness from 131HV to higher than 240HV, compared to Cu-0.6Cr-0.15Zr alloy. The electrical conductivity of the alloy decreased from 88%IACS to about 40%IACS. The Ni to Si mass ratio had limited effect on the conductivity of the alloy (between 4%IACS-9%IACS) and the change of peak value of the hardness was between 20HV-30HV.
Key words:  Cu-Ni-Si-Cr-Zr alloy    electrical conductivity    hardness
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51305193)
作者简介:  周清泉:男,1989年生,硕士,主要从事材料加工技术研究,E-mail:306709204@qq.com 帅歌旺:男,1978年生,博士,副教授,主要从事新型铜合金研究,E-mail:shuaigw@126.com
引用本文:    
周清泉, 帅歌旺, 刘建彬. Ni、Si元素配比对Cu-Cr-Zr合金组织与性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 76-80.
ZHOU Qingquan, SHUAI Gewang, LIU Jianbin. Effect of Ni and Si Mass Ratio on Microstructure and Properties of Cu-Cr-Zr Alloy. Materials Reports, 2017, 31(6): 76-80.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.016  或          https://www.mater-rep.com/CN/Y2017/V31/I6/76
1 中国机械工程学会焊接学会电阻焊专业委员会.电阻焊理论与实践[M].北京:机械工业出版社,1992.
2 Tu Fang,He Bolin.Progress of the strengthening methods of spot welding electrodes[J].Mater Mech Eng,2005(1):23(in Chinese).
涂芳,何柏林.点焊电极强化工艺的研究进展[J].机械工程材料,2005(1):23.
3 刘平,田保红,赵冬梅.铜合金功能材料[M].北京:科学出版社,2004:255.
4 Weatherly G C,Humble P,Borland D.Precipitation in a Cu-0.55%Cr alloy[J].Acta Metal,1979,27:1815.
5 Fujii T,Nakaza Wa H,Kato M,et al.Crystalography and morphology of nanosized Cr particles in a Cu-0.2Cr alloy[J].Acta Metal,2000,48:1033.
6 Batra I S,Dey G K,Kulkarniu D,et al.Precipitation in a Cu-Cr-Zr alloy[J].Mater Sci Eng A,2002,356:32.
7 Batra I S,Dey G K,Kulkarniu D,et al.Microstructure and properties of a Cu-Cr-Zr alloy[J].J Nuclear Mater,2001,36(8):91.
8 Poblano-Salas C A.The effect of cobalt additions on the mechanical and electrical properties of Cu-Cr-Zr melt-spun ribbons[J].Mater Sci Eng A,2008,491:309.
9 Wang Z Q,Zhong Y B,Cao G H.Influence of dc electric current on the hardness of thermally aged Cu-Cr-Zr alloy[J].J Alloys Compd,2009,479:303.
10 Batra I S,Dey G K,Kulkarni U D,et al.Precipitation in a Cu-Cr-Zr alloy[J].Mater Sci Eng A,2003,356(1-2):32.
11 Shuai Gewang,Fang Ping,Guo Zhenghua,et al.Analysis on electrode failure during resistance spot welding of zinc coated steel[J].Hot Work Technol,2009,38(13):122(in Chinese).
帅歌旺,方平,郭正华,等.镀锌钢板电阻点焊电极的失效分析[J].金属铸锻焊技术,2009,38(13):122.
12 Shuai Gewang,Zhou Pingjian,Liu Jianbin.Research progress and trends in resistance spot welding electrode[J].Mater Rev:Rev,2015,29(4):59(in Chinese).
帅歌旺,周平建,刘建彬.电阻点焊电极的研究进展与发展趋势[J].材料导报:综述篇,2015,29(4):59.
13 Yeung K S,Thornton P H.Transient thermal analysis of spot wel-ding electrodes[J].Weld J,1999,78(1):75.
14 Matsumoto J,Mochizuki H.Spot welding of aluminum alloy electrode life for various electrodes[J].Weld Int,1994,8(6):438.
15 Jiang Bingjin,Shuai Gewang, Pan Changran,et al. Influence of heat treatment on the properties of Cu-Ni-Si-Cr-Zr alloy [J].Special Cast Nonferr Alloys,2016,36(3):334(in Chinese).
江炳进,帅歌旺,潘昌然,等.热处理对点焊电极用Cu-Cr-Zr-Ni-Si合金性能的影响[J].特种铸造及有色合金,2016,36(3):334.
16 Pan Zhiyong,Wang Mingpu,Li Zhou,et al.Progress of study on super high strength Cu-Ni-Si alloy[J].Heat Treat Met,2007,32(7):55(in Chinese).
潘志勇,汪明朴,李周,等. 超高强度Cu-Ni-Si合金的研究进展[J].金属热处理,2007,32(7):55.
17 Rdzawski Z,Stobrawa I.Mechanical processing of Cu-Ni-Si-Cr-Mg alloy[J].Mater Sci Technol,1993(2):142.
18 Cao Yuwen,Ma Jusheng,Tang Xiangyun,et al.Design of Cu-Ni-Si copper alloy for lead frame[J].Chin J Nonferr Met,1999,9(4):723(in Chinese).
曹育文,马莒生,唐祥云,等.Cu-Ni-Si系引线框架用铜合金成分设计[J].中国有色金属学报,1999,9(4):723.
19 Lin Gaoyong,Zhang Shenghua.Study on age hardening characteristic of Cu-Ni-Si-Cr-Fe alloy[J].Heat Treatm Met,2001(4):28(in Chinese).
林高用,张胜华.Cu-Ni-Si-Cr-Fe合金时效强化特征的研究[J].金属热处理,2001(4):28.
[1] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[2] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[3] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[4] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[5] 易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
[6] 邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
[7] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[8] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[9] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[10] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[11] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[12] 詹子雄, 黄希, 韦丽华, 杨西亚, 李清山, 李小燕. 比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异[J]. 材料导报, 2023, 37(18): 22010165-6.
[13] 孙海猛, 牛赢, 焦锋, 王壮飞. 刀具前角对超声复合加工成形切屑组织与性能的影响[J]. 材料导报, 2023, 37(17): 22030291-7.
[14] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[15] 马晶博, 王涛, 陈冲, 熊美, 肖利强, 魏世忠, 毛丰, 张程. 高熵合金涂层对铝/钢液固复合双金属组织和性能的影响[J]. 材料导报, 2023, 37(15): 22010067-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed