Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22010165-6    https://doi.org/10.11896/cldb.22010165
  金属与金属基复合材料 |
比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异
詹子雄1, 黄希1,*, 韦丽华2, 杨西亚3, 李清山4, 李小燕1
1 东华理工大学核科学与工程学院,南昌 330013
2 东华理工大学化学生物与材料科学学院,南昌 330013
3 山东钢铁集团日照有限公司,山东 日照 276899
4 万向钱潮股份有限公司,杭州 311215
Comparison of the Yield Strength of Ion Irradiated Low Activation Ferritic/Martensitic Steel Extracted from Different Indenters
ZHAN Zixiong1, HUANG Xi1,*, WEI Lihua2, YANG Xiya3, LI Qingshan4, LI Xiaoyan1
1 School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
2 School of Chemistry Biology and Materials Science, East China University of Technology, Nanchang 330013, China
3 Shandong Iron Group Rizhao Co., Ltd., Rizhao 276899, Shandong, China
4 Wangxiang Qianchao Co., Ltd., Hangzhou 311215, China
下载:  全 文 ( PDF ) ( 3695KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Berkovich压头和球形压头提取了550 ℃时不同辐照剂量辐照的低活化铁素体/马氏体(RAFM)钢的屈服强度并进行比较。结果表明:无论使用何种压头测量,辐照后低活化铁素体/马氏体钢均表现出明显的辐照硬化,但随着辐照剂量的增加,硬化程度呈现先增大后减小的趋势。对于未辐照样品,两种压头提取出的屈服强度值差异较小,但均高于样品的拉伸屈服强度。而对于辐照样品,球形压头提取出的屈服强度显著高于Berkovich压头,两者最大差距达到43%。对比辐照前后压头提取的屈服强度差值Δσy可知,相较于Berkovich压头,球形压头所获得的Δσy更接近于中子辐照样品的Δσy。压头形状、压入深度和堆积效应(pile-up)是导致两种压头Δσy差距显著的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
詹子雄
黄希
韦丽华
杨西亚
李清山
李小燕
关键词:  低活化马氏体钢  离子辐照  硬度  屈服强度  压头    
Abstract: The yield strength of low-activation ferritic/martensitic steel irradiated at 550 ℃ with different doses was extracted by Berkovich and Spherical indenter for comparison with each other. The results show that an obvious irradiation induced hardening behavior was observed, while the hardness first increased and then decreased with the increasing of irradiation dose. Regarding the unirradiated samples, the difference of yield strength extracted by these two indenters was smaller, but they were both higher than the yield strength obtained from the tensile experiments. For irradiated samples, the yield strength extracted by spherical indenter was significantly higher than that by Berkovich indenter. The maximum difference in yield strength (Δσy) between them was 43%. Comparing the irradiation effect on the yield strength extracted using both Berkovich and spherical indenters, it can be found that the values obtained from the spherical indenter were closer to these obtained from the neutron irradiated sample in comparison to the Berkovich indenter. The reasons caused this significant gap in Δσy were attributed to the effect of the indenter shape, penetration depth, and the height of pile-up.
Key words:  low activation martensitic steel    ion irradiation    hardness    yield strength    indenter
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(12105044);江西省自然科学基金(20202BABL211014);江西省教育厅基金(GJJ180401)
通讯作者:  *黄希,东华理工大学核科学与工程学院讲师、硕士研究生导师。2017年于上海交通大学获得核科学与技术专业博士学位。现为东华理工大学讲师。研究方向为材料的辐照损伤效应,发表学术论文16篇。xihuang@ecut.edu.cn   
作者简介:  詹子雄,2020年6月于东华理工大学获得工学学士学位。现为东华理工大学核科学与工程学院硕士研究生,在黄希老师的指导下进行研究。目前主要研究领域为纳米压痕技术于辐照材料上的应用。
引用本文:    
詹子雄, 黄希, 韦丽华, 杨西亚, 李清山, 李小燕. 比较不同压头提取离子辐照后低活化铁素体/马氏体钢屈服强度的差异[J]. 材料导报, 2023, 37(18): 22010165-6.
ZHAN Zixiong, HUANG Xi, WEI Lihua, YANG Xiya, LI Qingshan, LI Xiaoyan. Comparison of the Yield Strength of Ion Irradiated Low Activation Ferritic/Martensitic Steel Extracted from Different Indenters. Materials Reports, 2023, 37(18): 22010165-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010165  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22010165
1 Li X G, Yan Q Z, Ge C C. Journal of Iron and Steel Research, 2009, 21(6), 6 (in Chinese).
黎兴刚, 燕青芝, 葛昌纯. 钢铁研究学报, 2009, 21(6), 6.
2 Bloom E E, Conn R W, Davis J W, et al. Journal Nuclear Materials, 1984, 122(1-3), 17.
3 Tanigawa H, Gaganidze E, Hirose T, et al. Nuclear Fusion, 2017, 57(9), 092004.
4 Baluc N, Gelles D S, Jitsukawa S, et al. Journal Nuclear Materials, 2007, 367, 33.
5 Schuh C A. Materials Today, 2006, 9(5), 32.
6 Was G S, Jias Z, Getto E, et al. Scripta Materialia, 2014, 88, 33.
7 Krumwiede D L, Yamamoto T, Saleh T A. Journal Nuclear Materials, 2018, 504, 135.
8 Pathak S, Kalidindi S R. Materials Science and Engineering Reports, 2015, 91, 1.
9 Voyiadjis G Z, Zhang C. Materials Science and Engineering: A, 2015, 621, 218.
10 Zhang C, Voyiadjis G Z. Materials Science and Engineering: A, 2016, 659, 55.
11 Heintze C, Recknagel C, Bergner F, et al. Nuclear Instruments and Met-hods in Physics Research Section B-Beam Interactions with Materials Atoms, 2009, 267(8), 1505.
12 Ruiz-Moreno A, Hahner P. Materials & Design, 2018, 145, 168.
13 Elmustafa A A, Stone D S. Journal of the Mechanics and Physics of So-lids, 2003, 51(2), 357.
14 Lilleodden E T, Zimmerman J A, Foiles S M, et al. Journal of the Mechanics Physics of Solids, 2003, 51(5), 901.
15 Zhu T. Journal of Mechanics Physics of Solids, 2004, 52(3), 691.
16 Mattucci M A, Cherubin I, Changizian P, et al. Acta Materialia, 2021, 207, 116702.
17 Hosemann P, Kiener D, Wang Y, et al. Journal of Nuclear Materials, 2012, 425(1), 136.
18 Liu J Z, Huang H F, Zhu Z B, et al. Acta Metall Sinica, 2020, 56(5), 753 (in Chinese).
刘继召, 黄鹤飞, 朱振博, 等. 金属学报, 2020, 56(5), 753.
19 Zinkle S J. Comprehensive Nuclear Materials, 2012, 1, 65.
20 Li Q S, Shen Y Z, Huang X, et al. Metals and Materials International, 2017, 23(6), 1106.
21 Nix W D, Gao H J. Journal of Mechanics Physics of Solids, 1998, 46(3), 411.
22 Feng G, Nix W D. Scripta Materialia, 2004, 51(6), 599.
23 Kareer A, Prasitthipayong A, Krumwiede D. Journal of Nuclear Mate-rials, 2018, 498, 274.
24 Milot T S. Establishing correlations for predicting tensile properties based on the shear punch test and vickers microhardness data. Master's Thesis, University of California Santa Barbara, USA, 2013.
25 Zhu P C, Zhao Y J, Agarwal S, et al. Materials & Design, 2022, 213, 110317.
26 Ge H, Peng L, Dai Y, et al. Journal of Nuclear Materials, 2016, 468, 240.
27 Briscoe B J, Sebastian K S, Adams M J. Journal of Mechanics Physics of Solids, 1994. 27(6), 1156.
28 Miyake K, Fujisawa S, Korenaga A, et al. Japanese Journal of Applied Physics, 2004, 43(7), 4602.
29 Gaganidze E, Schneider H C, Petersen C, et al. In: Conference Record of the 21st IAEA Fusion Energy Conference. Chengdu, 2008, pp. 13.
30 Monteiro De Sena Silvares de Carvalho I. Steels for nuclear reactors: Eurofer 97. Master's Thesis, Delft University of Technology, Netherlands, 2016.
31 Wakai E, Taguchi T, Yamamoto T, et al. Journal of Nuclear Materials, 2004, 329, 1133.
32 Tong Z, Dai Y. Journal of Nuclear Materials, 2010, 398(1), 43.
33 Kasada R, Kimura A. Materials Transactions, 2005, 46(3), 475.
[1] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[2] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[3] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[4] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[5] 孙海猛, 牛赢, 焦锋, 王壮飞. 刀具前角对超声复合加工成形切屑组织与性能的影响[J]. 材料导报, 2023, 37(17): 22030291-7.
[6] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[7] 马晶博, 王涛, 陈冲, 熊美, 肖利强, 魏世忠, 毛丰, 张程. 高熵合金涂层对铝/钢液固复合双金属组织和性能的影响[J]. 材料导报, 2023, 37(15): 22010067-8.
[8] 梁梦, 黎振华, 刘美红, 罗心磊, 解靖伟. 选区激光熔化Fe-10Cu合金成形工艺优化研究[J]. 材料导报, 2023, 37(14): 21110123-7.
[9] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[10] 罗圆, 王献, 赵君, 胡昌义, 张大伟, 魏燕, 张诩翔, 蔡宏中. Pt-Co-Mn合金组织结构及性能研究[J]. 材料导报, 2023, 37(10): 21060215-5.
[11] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[12] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[13] 龙伟民, 秦建, 路全彬, 刘大双, 吴爱萍. 旋耕刀感应钎涂层热处理工艺研究[J]. 材料导报, 2022, 36(7): 21090163-5.
[14] 孙玉玲, 马宏昊, 沈兆武, 杨明, 田启超. 槽型结构316L/CuCrZr真空熔铸复合技术的研究[J]. 材料导报, 2022, 36(23): 21050179-5.
[15] 王碧侠, 于翔, 李建新, 王子钰, 马红周. 熔盐电解法和固体粉末法在纯镍表面渗硼的对比研究[J]. 材料导报, 2022, 36(18): 21050282-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed