Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21050282-5    https://doi.org/10.11896/cldb.21050282
  金属与金属基复合材料 |
熔盐电解法和固体粉末法在纯镍表面渗硼的对比研究
王碧侠*, 于翔, 李建新, 王子钰, 马红周
西安建筑科技大学冶金工程学院,西安 710055
Comparative Study of Boronizing of Pure Nickel by Molten Salt Electrolysis Process and Solid Powder Method
WANG Bixia*, YU Xiang, LI Jianxin, WANG Ziyu, MA Hongzhou
College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 4098KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作分别采用熔盐电解法和固体粉末法对纯镍表面进行渗硼处理,以提高镍的表面硬度。熔盐电解法以硼砂(Na2O4B7·10H2O)作硼源,碳酸钠(Na2CO3)作支持电解质,电流密度为750 A/m2;固体粉末法采用碳化硼(B4C)和氟硼酸钾(KBF4)作为渗硼剂。利用扫描电镜(SEM)和能谱仪(EDS)分析渗硼试样的断面形貌和元素含量,利用X射线衍射仪(XRD)分析试样的物相。结果表明:采用熔盐电解法和固体粉末法在纯镍表面渗硼,均得到由Ni2B和Ni3B组成的渗层;熔盐电解法在电解温度为950 ℃、电解时间为4 h时渗层厚度约为184.35 μm,渗层表面硬度值为1 755HK;固体粉末法在渗硼温度为950 ℃、渗硼时间为10 h时所得渗层厚度约为176.35 μm,渗层的表面硬度值是1 526HK;镍经过渗硼后其表面硬度值有明显的增加,渗层厚度越大,表面硬度值越高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王碧侠
于翔
李建新
王子钰
马红周
关键词:  渗硼  纯镍  熔盐电解法  固体粉末法  表面硬度    
Abstract: In this work, the boriding of nickel was investigated by molten salt electrolysis process and solid powder method to improve its surface hardness. The electrochemical boriding was carried out in a borax-sodium carbonate molten electrolyte with the current density of 750 A/m2 while B4C and KBF4 were used as boronizing agent in solid powder boriding process. The microstructural characterization and phase analysis of the resultant borides layer were performed using optical scanning microscopy(SEM) and X-ray diffraction methods (XRD), and energy dispersive spectrometer(EDS) was applied to determine the element present in the borides. The results show that a boronizing layer containing Ni2B and Ni3B can be formed on the surface of pure nickel by the above two methods. The thickness of the boronizing layer is about 184.35 μm when the electrolysis temperature is 950 ℃ and the duration is 4 h, using molten salt electrolysis method. The thickness of the boronizing layer is about 176.35 μm when the boronizing temperature is 950 ℃ and duration is 10 h for the solid powder boronizing process. The surface hardness values of the boronizing samples reach 1 755HK and 1 526HK for electrochemical boriding and solid powder method respctively, which are higher than that of the pure nickel. It is found that the greater the thickness of the boronizing layer is, the higher the surface hardness value will be.
Key words:  boronizing    pure nickel    molten salt electrolysis process    solid powder method    surface hardness
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51404186)
通讯作者:  *yj-wangbixia@xauat.edu.cn   
作者简介:  王碧侠,博士,教授。本、硕、博就读于西安建筑大学。目前发表学术论文40余篇。主要研究方向为熔盐电解法制备稀有金属、金属材料表面渗硼处理、储能材料制备与回收等。
引用本文:    
王碧侠, 于翔, 李建新, 王子钰, 马红周. 熔盐电解法和固体粉末法在纯镍表面渗硼的对比研究[J]. 材料导报, 2022, 36(18): 21050282-5.
WANG Bixia, YU Xiang, LI Jianxin, WANG Ziyu, MA Hongzhou. Comparative Study of Boronizing of Pure Nickel by Molten Salt Electrolysis Process and Solid Powder Method. Materials Reports, 2022, 36(18): 21050282-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050282  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21050282
1 Liu G Q, Zhang B S, Zhang F, et al. China Resources Comprehensive Utilization, 2020, 38(7), 102(in Chinese).
刘贵清, 张邦胜, 张帆, 等. 中国资源综合利用, 2020, 38(7), 102.
2 Yang Z, Li G, Zheng B L. Nonferrous Metals Processing, 2021, 50(3),7(in Chinese).
杨哲,李桂,郑博龙.有色金属加工,2021,50(3),7.
3 Zhai X J. Heavy metal metallurgy, Metallurgical Industry Press, China, 2011(in Chinese).
翟秀静. 重金属冶金学, 冶金工业出版社,2011.
4 Quan C J, Liu Y N, Wang H, et al. China Chemical Trade, 2020, 12(13), 223(in Chinese).
权超健, 刘燕娜, 王浩,等. 中国化工贸易, 2020, 12(13), 223.
5 Wang H, Zhang J J, Feng X F, et al. Surface Technology, 2020, 49(5), 230(in Chinese).
王昊,张娇娇,冯晓飞,等. 表面技术, 2020, 49(5), 230.
6 Shi L C, Wu X C, Yao J, et al. Shanghai Metals, 2017, 39(4), 25(in Chinese).
施良才,吴晓春,姚杰,等. 上海金属, 2017, 39(4), 25.
7 Deng D W, Wang C G, Liu Q Q, et al. Transactions of Nonferrous Metals Society of China, 2015, 25, 437.
8 Liu H L. Investigation and property analysis of electric field assisted boriding process on pure nickel substrates. Master's Thesis, South China University of Technology, China, 2020(in Chinese).
刘欢龙. 纯镍基体电场辅助低温渗硼工艺及性能的研究. 硕士学位论文, 华南理工大学, 2020.
9 Makuch N. Transactions of Nonferrous Metals Society of China, 2021, 3(31), 764.
10 Natalia Makuch, Piotr Dziarski. Surface & Coatings Technology, 2011, 405, 126508.
11 Ma X F. Study on boriding of TA2 by molten salt electrolysis in Na2B4O7-CaCl2 system. Master's Thesis, Xi'an University of Architecture and Technology, China, 2017(in Chinese).
马兴飞. Na2B4O7-CaCl2体系TA2表面熔盐电解法渗硼的基础研究.硕士学位论文,西安建筑科技大学, 2017.
12 Kulka M, Makuch N, Poławski M. Surface and Coatings Technology, 2014, 244, 78.
13 Liu J J, Chen Z P. Plating and Finishing, 2011, 33(7), 24(in Chinese).
刘建建, 陈祝平. 电镀与精饰, 2011, 33(7), 24.
14 Liao L, Liu J Y, Jin Y R, et al. Journal of Xihua University(Natural Science Edition), 2012, 31(1), 98(in Chinese).
廖磊,刘锦云,金应荣,等. 西华大学学报(自然科学版), 2012, 31(1), 98.
15 Xu Z Y, Yuan K, Zhang S Y, et al. Thermal Spray Technology, 2020, 12(4), 37(in Chinese).
许贞元, 原慷, 张思源, 等. 热喷涂技术, 2020, 12(4), 37.
16 Sista V, Kahvecioglu O, Eryilmaz O L, et al. Thin Solid Films, 2011, 520(5), 1582.
17 Eroglu M. Surface and Coatings Technology, 2009, 203(16),2229.
18 Wang B X, Cheng L, Tian D H, et al. Rare Metal Materials and Engineering, 2016, 45(3), 709(in Chinese).
王碧侠, 程亮, 田栋华, 等. 稀有金属材料与工程, 2016, 45(3), 709.
19 Wang B X, Tian D H, Ma X F, et al. Materials Reports A: Review Papers, 2015, 29(1), 117(in Chinese).
王碧侠, 田栋华, 马兴飞, 等. 材料导报:综述篇, 2015, 29(1), 117.
20 Sista V, Kahvecioglu O, Kartal G, et al. Surface and Coatings Technology, 2013, 215, 452.
21 Huang Y G, Ren M D, Zhao X, et al. Materials Reports B: Research Papers, 2012, 22(6), 14(in Chinese).
黄有国, 任孟德, 赵欣, 等. 材料导报:研究篇, 2012, 22(6), 14.
22 Wu Y K, Yang H L, Xu H, et al. Plating & Finishing, 2014, 36(11), 24(in Chinese).
吴晔康, 杨海丽, 徐宏, 等. 电镀与精饰, 2014, 36(11), 24.
23 Mu D, Hu Z H, Shen B L. Rare Metal Materials and Engineering, 2015, 44(8), 1979(in Chinese).
慕东, 胡志华, 沈保罗. 稀有金属材料与工程, 2015, 44(8), 1979.
24 Wen F R, Tang C B, Chen H X, et al. Plating & Finishing, 2018, 37(21), 994(in Chinese).
文芙蓉, 唐长斌, 陈红霞, 等. 电镀与精饰, 2018, 37(21), 994.
[1] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[2] 何浩然, 许俊强, 苗欣, 刘奇, 薄新维. 钼及钼合金表面硅化物涂层的制备、改性及抗氧化性能研究进展[J]. 材料导报, 2019, 33(19): 3227-3235.
[3] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[4] 缪倩倩, 陈海燕, 顾伟, 蒋永锋, 宋亓宁. 钛合金表面阳极微弧等离子体渗硼层的研究[J]. 材料导报, 2018, 32(18): 3161-3165.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed