Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3227-3235    https://doi.org/10.11896/cldb.18060028
  无机非金属及其复合材料 |
钼及钼合金表面硅化物涂层的制备、改性及抗氧化性能研究进展
何浩然1,2, 许俊强1, 苗欣3, 刘奇2, 薄新维2
1 重庆理工大学化学化工学院,重庆 400054;
2 重庆材料研究院有限公司,重庆 400707;
3 中国电子科技集团第49研究所,哈尔滨 100048
Preparation, Modification and Oxidation Resistance of Silicide Coatings on Moand Mo Alloys Substrates: a Review
HE Haoran1,2, XU Junqiang1, MIAO Xin3, LIU Qi2, BO Xinwei2
1 School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054;
2 Chongqing Materials Research Institute Co., Ltd., Chongqing 400707;
3 The 49th Research Institute of China Electronics Technology Group Corporation, Harbin 100048
下载:  全 文 ( PDF ) ( 2913KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钼及其合金具有优异的高温力学性能和耐蚀性能,以及相比于钨、铌、钽更为便宜的价格,因而在电子器件、发热元件、玻璃纤维加工、测温用保护管以及航空航天等尖端领域拥有较为广泛的运用。但是,钼的抗氧化能力较差,这在很大程度上限制了钼在高温领域的应用。因此,研究和提高钼及其合金的抗氧化性能有着重要意义。
硅化物涂层具有高温自愈合能力,能对基材起到良好的保护作用,因此成为钼及其合金基体材料高温防护涂层的研究热点。研究人员对钼及其合金表面硅化物涂层的改性已开展了广泛的探索,如:(1)采用渗氮、渗硼、渗铝等方式引入有益元素,实现单一元素改性;(2)利用多种元素进行复合改性或形成梯度化涂层;(3)引入增强相对涂层进行改性。渗氮改性改变了硅化钼涂层的微观结构,使涂层与基体间的热膨胀系数更为接近。渗硼改性能改善涂层的自愈合能力,形成的T2(Mo5SiB2)合金层能降低硅的内扩散速率。渗铝改性使硅化物涂层在低温氧化时形成Al2O3-SiO2薄膜,有助于防止MoSi2涂层的低温“pesting”失效。在复合改性与形成梯度化涂层方面,渗碳改性可利用涂层中各元素与基体的反应形成梯度化涂层,改善涂层与基体的热膨胀系数差异并阻碍有益硅向基体扩散。渗铬改性则利用铬元素富集在涂层表层,抑制涂层氧化时硅元素的内扩散和MoO3的挥发。渗钛改性涂层中,钛元素的合金化作用可形成C11b/C40双相结构,其可以改善涂层的高温延展性,且在氧化时形成的致密Si-Ti-O玻璃层能增强涂层的抗氧化能力。此外,利用含锆增强相(如ZrB2和ZrSi2)改性的硅化物涂层在高温氧化下生成高熔点ZrO2颗粒,从而在涂层表面形成“骨骼”结构,提升涂层的抗氧化性能。而引入晶须增强相后,晶须的拔出桥连与裂纹转向机制能有效提高涂层的强度和韧性,抑制涂层中裂纹的扩展。基于国内外对单一硅化物和改性硅化物涂层的研究结果,可以总结得出,硅化物涂层抗氧化影响因素主要包括低温“pesting”氧化、涂层与基体间的互扩散、涂层与基体间的热膨胀系数差异。
本文结合国内外研究近况,综述了钼及钼合金表面单一硅化物涂层与改性硅化物涂层的研究现状,以及影响硅化物涂层抗氧化性能的关键因素,并简要分析了该领域尚待研究和解决的问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何浩然
许俊强
苗欣
刘奇
薄新维
关键词:    钼合金  硅化物  抗氧化  涂层  灾难性氧化  梯度涂层  增强相  渗氮  渗硼  渗铝  渗钛  渗碳  渗铬    
Abstract: Molybdenum has been widely used in electronic devices, heater elements, glass fiber processing, thermometry protective tubes and aerospace crafts, by virtue of its excellent high-temperature mechanical properties, corrosion resistance, and a cheaper price compared to tungsten, niobium and tantalum. However, poor antioxidant ability has limited the further application of molybdenum under high temperature circumstances. This exaggerates the importance of research and improvement for antioxidant ability of molybdenum and its alloys.
The silicide coating, with high-temperature self-healing ability, has been regarded as a promising protection for Mo and Mo alloys substrates against oxidation. Thus extensive research has been done to improve silicide coatings, which includes: (i) single element modification by nitriding, boronizing, aluminizing, etc., (ii) multi-element modification and the formation of composition-graded coating, and (iii) introducing reinforcement phases. Nitriding can change the microstructure of silicide coating, and consequently reduce the difference in thermal expansion coefficient (CTE) between coating and substrate. Boronizing can improve the coating’s self-healing ability and result in the formation of T2 (Mo5SiB2) alloy layer which suppresses the internal diffusion of Si. Aluminizing makes the coating to generate Al2O3-SiO2 thin film under low-temperature oxidative condition, and thus is conducive to the prevention of “pesting” failure of MoSi2 coating. In respect of multi-element modification, carburizing can lead to the reaction between coating elements and substrate to form graded coating. The enrichment of Cr on coating surface by chromizing reduces the internal diffusion of Si and the volatilization of MoO3. The high-temperature ductility and anti-oxidation properties of the silicide coating can be improved by titanizing. The former is the consequence of C11b/C40 dual-phase structure caused by the alloying effect of titanium, while the latter comes from the formation of dense Si-Ti-O compound glass. In addition, Zr-containing reinforcements (e.g. ZrB2 and ZrSi2) can also be used to modify silicide coatings. And high-melting-point phase ZrO2 generated at high temperatures in modified coatings play a “skeleton” role in the oxide scale improving anti-oxidation properties of coating. On the other hand, by adding whiskers as reinforcing particles, coating is promoted in strength and toughness and crack propagation is restrained, owing to pull out, bridging and crack deflection effects of the whiskers. It can be concluded, based on the domestic and foreign studies upon element modification of silicide coating, that the key factors influencing oxidation resis-tance of silicide coating are “pesting” oxidation, inter-diffusion between coating and substrate, and difference of CTE between coating and substrate.
This review provides a comprehensive description over the global research works on silicide coating modification, by adding single element in isolation or using multiple elements in combination or introducing reinforcement. It also gives an analysis for the key factors related to oxidation resistance of silicide coating, and an outlook on the future research.
Key words:  molybdenum    molybdenum alloys    silicide    anti-oxidation    coating    “pesting” oxidation    graded coating    reinforcement    nitriding    boronizing    aluminizing    titanizing    carburizing    chromizing
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TG146.4  
基金资助: 重庆市重点产业共性关键技术创新专项项目(cstc2015zdcy-ztzx5005)
作者简介:  何浩然,工程师,2014年7月毕业于重庆大学,获得工学学士学位。现为重庆材料研究院有限公司与重庆理工大学定向培养的硕士研究生,在许俊强、刘奇教授的指导下进行研究。目前主要研究领域为钼基硅化物涂层及其改性硅化物涂层。许俊强,重庆理工大学教授,博士研究生导师。2007年在四川大学化学工程学院获得博士学位。先后入选重庆市首批青年骨干教师,重庆市高等学校优秀人才计划。主要从事介孔分子筛的制备及其多相催化研究工作。近年来,在材料化学相关领域发表科研论文80余篇,授权专利5项。xujunqiang@cqut.edu.cn
引用本文:    
何浩然, 许俊强, 苗欣, 刘奇, 薄新维. 钼及钼合金表面硅化物涂层的制备、改性及抗氧化性能研究进展[J]. 材料导报, 2019, 33(19): 3227-3235.
HE Haoran, XU Junqiang, MIAO Xin, LIU Qi, BO Xinwei. Preparation, Modification and Oxidation Resistance of Silicide Coatings on Moand Mo Alloys Substrates: a Review. Materials Reports, 2019, 33(19): 3227-3235.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060028  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3227
1 Zheng X, Bai R, Wang D H, et al. Rare Metal Materials and Enginee-ring,2011,40(10),1871(in Chinese).郑欣,白润,王东辉,等.稀有金属材料与工程,2011,40(10),1871.2 Lang D, Pöhl C, Holec D, et al. Journal of Alloys & Compounds,2016,654,445.3 Li B R, Cheng S. Aerospace Manufacturing Technology,1995(4),43(in Chinese).李宝蓉,程升. 航天制造技术,1995(4),43.4 Han Q. China Molybdenum Industry,2002,26(4),32(in Chinese).韩强.中国钼业,2002,26(4),32.5 Li M S. High temperature corrosion of metal, Metallurgical Industry Press, China,2001(in Chinese).李美栓.金属的高温腐蚀,冶金工业出版社,2001.6 Chakraborty S P, Banerjee S, Sharma I G, et al. Journal of Nuclear Materials,2010,403(1),152.7 Wang Y, Wang D Z, Shun A K, et al. Materials Review A: Review Papers,2012,26(1),137(in Chinese).汪异,王德志,孙翱魁,等.材料导报:综述篇,2012,26(1),137.8 Song R, Wang K S, Hu P, et al. Materials Review A: Review Papers,2016,30(3),69(in Chinese).宋瑞,王快社,胡平,等.材料导报:综述篇,2016,30(3),69.9 Lee E W, Khan A, Cook J, et al. JOM,1991,43(3),54.10 Zhu Y T, Stan M, Conzone S D, et al. Journal of the American Ceramic Society,1999,82(10),2785.11 Opeka M M, Talmy I G, Zaykoski J A. Journal of Materials Science,2004,39(19),5887.12 Tatemoto K, Ono Y, Suzuki R O. Journal of Physics & Chemistry of Solids,2005,66(2),526.13 Alam M Z, Venkataraman B, Sarma B, et al. Journal of Alloys and Compounds,2009,487(1-2),335.14 Yoon J K, Kim G H, Byun J Y, et al. Surface & Coatings Technology,2003,172(2),176.15 Nyutu E K, Kmetz M A, Suib S L. Surface & Coatings Technology,2006,200(12),3980.16 Xie N P. Study on preparation and properties of silicides coating on the molybdenum surface by in-situ synthesizing. Master’s Thesis, Hunan University of Science and Technology, China,2011(in Chinese).谢能平.钼表面原位合成硅化物涂层的制备工艺与性能研究.硕士学位论文,湖南科技大学,2011.17 Cai Z, Liu S, Xiao L, et al. Surface & Coatings Technology,2017,324,182.18 Wang Y. Preparation and properties of Mo-based alloys oxidation resis-tance coatings at elevated temperature. Ph.D. Thesis, Central South University, China,2014(in Chinese).汪异.钼基合金高温抗氧化涂层的制备及其性能研究.博士学位论文,中南大学,2014.19 Chatilyan H A, Kharatyan S L, Harutyunyan A B. Materials Science & Engineering A,2007,459(1),227.20 Yoon J K, Kim G H, Byun J Y, et al. Surface & Coatings Technology,2001,148(2),129.21 Knittel S, Mathieu S, Vilasi M. Intermetallics,2011,19(8),1207.22 Li J G, Zhou S Y, Hu Y F. Modern surface engineering and its application, Chemical Industry Press, China,2014(in Chinese).李金桂,周师岳,胡业峰.现代表面工程技术与应用,化学工业出版社,2014.23 Glass D. In: Conference Record of the 2008 AIAA 15th Conference on Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles. Dayton,2008,pp.2682.24 Hirvonen J P, Suni I, Kattelus H, et al. Surface & Coatings Technology,1995,s74-75(1-3),981.25 Hsieh T, Choe H, Lavernia E J, et al. Materials Letters,1997,30(30),407.26 Yoon J K, Lee J K, Byun J Y, et al. Surface & Coatings Technology,2002,160(1),29.27 Yoon J K, Kim G H, Byun J Y, et al. Surface & Coatings Technology,2003,165(1),81.28 Yoon J K, Kim G H, Han J H, et al. Surface & Coatings Technology,2005,200(7),2537.29 Gu S Y, Zhang H A, Xie N P. Journal of Xiamen University of Technology,2011,19(2),18(in Chinese).古思勇,张厚安,谢能平.厦门理工学院学报,2011,19(2),18.30 Huang Y, Lin J, Zhang H. Ceramics International,2015,41(10),13903.31 Xie N P, Zhang H A, Gu S Y. Materials for Mechanical Engineering,2012,36(1),23(in Chinese).谢能平,张厚安,古思勇.机械工程材料,2012,36(1),23.32 Meyer M K, Thom A J, Akinc M. Intermetallics,1999,7(2),153.33 Meyer M, Kramer M, Akinc M. Advanced Materials,1996,8(1),85.34 Akinc M, Meyer M K, Kramer M J, et al. Materials Science & Enginee-ring A (Structural Materials: Properties, Microstructure and Processing),1999,261(1-2),16.35 Tang Z, Thom A J, Kramer M J, et al. Intermetallics,2008,16(9),1125.36 Tian X, Guo X, Sun Z, et al. International Journal of Refractory Metals & Hard Materials,2014,45,8.37 Wang Y, Yan J, Wang D. International Journal of Refractory Metals & Hard Materials,2017,68,60.38 Meschter P J. Metallurgical Transactions A (Physical Metallurgy and Materials, Science),1992,23(6),1763.39 Chou T C, Nieh T G. JOM,1993,45(12),15.40 Mitra R, Rao V V R. Materials Science & Engineering A,1999,260(1),146.41 Majumdar S. Surface & Coatings Technology,2012,206(15),3393.42 Chen H, Ma Q, Shao X, et al. Materials Science & Engineering A,2014,592(2),12.43 Majumdar S, Sharma I G. Intermetallics,2011,19(4),541.44 Tang D Z. Research on the preparation and properties of coating on molybdenum. Master’s Thesis, Central South University, China,2014(in Chinese).汤德志.钼合金表面涂层的制备及性能研究.硕士学位论文,中南大学,2014.45 Gu S Y, Zhang H A, Xie N P. Mining and Metallurgical Engineering,2012,32(5),116(in Chinese).古思勇,张厚安,谢能平.矿冶工程,2012,32(5),116.46 Gu S Y, Zhang H A, Wu Y H, et al. Rare Metal Materials and Enginee-ring,2014,43(5),1219(in Chinese).古思勇,张厚安,吴艺辉,等.稀有金属材料与工程,2014,43(5),1219.47 Liu J, Gong Q, Shao Y, et al. Applied Surface Science,2014,308(308),261.48 Zhang H, Gu S. International Journal of Refractory Metals & Hard Mate-rials,2013,41(11),128.49 Zhang Ping, Guo Xiping, Ren Xuanru, et al. Intermetallics,2018,93(2),134.50 Tao Q, Guo X P. Journal of Inorganic Materials,2009,24(6),1219.51 Heron A J, Schaffer G B. Materials Science & Engineering A,2003,352(1),105.52 Umakoshi Y, Sakagami T, Hirano T, et al. Acta Metallurgica Et Materialia,1990,38(6),909.53 Boettinger W J, Perepezko J H, Frankwicz P S. Materials Science & Engineering A,1992,155(1-2),33.54 Li W, Fan J L, Fan Y, et al. Journal of Alloys and Compounds,2018,740(5),711.55 Zhang Y, Li Y, Bai C. Ceramics International,2017,43(8),6250.56 Zhang Y, Ni W, Li Y. Ceramics International,2018,44(10),11166.57 Wang L, Fu Q, Zhao F, et al. Surface & Coatings Technology,2018,347,257.58 Kobayashi A, El-Sheikhy R. Transactions of Jwri,2007,36,87.59 Vinci A, Zoli L, Sciti D. Journal of the European Ceramic Society,2018,38,3767.60 Guo S, Mizuguchi T, Ikegami M, et al. Ceramics International,2011,37(2),585.61 Jiang Y, Feng D, Ru H, et al. Surface & Coatings Technology,2018,339,91.62 Xiao Lairong, Rao Bo, Cai Zhenyang, et al. Ordnance Material Science and Engineering,2015(6),27(in Chinese).肖来荣,饶博,蔡圳阳,等.兵器材料科学与工程,2015(6),27.63 Cai Z, Wu Y, Liu H, et al. Materials & Design,2018,155,463.64 David H C, Hurley G F. Cheminform,1987,70(4),C-79.65 Fu Q G, Li H J, Li K Z, et al. Surface Review & Letters,2006,44(9),1866.66 Jia L, Zhang X, Zhi W, et al. Materials & Design,2012,34,853.67 Ren J, Zhang Y, Zhang P, et al. Journal of the European Ceramic Society, 2017, 37(8), 2759.68 Fu Qiangang. Study on the SiC whisker-toughed silicides and SiC/Glass oxidation protective coatings. Ph.D. Thesis, Northwestern Polytechnical University, China,2007 (in Chinese).付前刚.SiC晶须增韧硅化物及SiC/玻璃高温防氧化涂层的研究.博士学位论文,西北工业大学,2007.69 Wang L, Fu Q, Zhao F. Intermetallics,2018,94,106.70 Feng P Z, Qu X H, Humail I S, et al. Journal of University of Science & Technology Beijing,2007,14(6),558.71 Wang G, Zhao S K, Jiang G. Journal of Inorganic Materials,2001,16(6),1041(in Chinese).王刚,赵世柯,江莞.无机材料学报,2001,16(6),1041.72 Tortorici P C, Dayananda M A. Metallurgical & Materials Transactions A,1999,30(3),545.73 Yoon J K, Lee J K, Lee K H, et al. Intermetallics,2003,11(7),687.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[3] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[4] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[5] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[6] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[7] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[8] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[9] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[10] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[11] 蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
[12] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[13] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[14] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[15] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed