Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 854-861    https://doi.org/10.11896/cldb.201905018
  金属与金属基复合材料 |
重型钎具用钢组织性能控制的研究现状
蒋波1, 刘雅政1, 周乐育2, 张朝磊1, 陈列3, 王国存3
1 北京科技大学材料科学与工程学院,北京 100083;
2 北京机电研究所,北京 100083;
3 西宁特殊钢股份有限公司青海省特殊钢工程技术研究中心,西宁 810005
Research Status of Microstructure and Properties Control of Steel for Heavy Drill
JIANG Bo1, LIU Yazheng1, ZHOU Leyu2, ZHANG Chaolei1, CHEN Lie3, WANG Guocun3
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083;
2 Beijing Research Institute of Mechanical & Electrical Technology, Beijing 100083;
3 Qinghai Special Steel Engineering Technology Research Center, Xining Special Steel Co., Ltd., Xining 810005
下载:  全 文 ( PDF ) ( 2210KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 凿岩钎具是由钎头、钎杆、钎尾等部件组成的一个细长的杆件系统,是矿业资源开采、交通道路建设、水电项目施工、城镇化建设等施工项目中用于钻凿岩石的主要工具。重载钎具产品在使用过程中受到岩矿石的剧烈磨损、高压水流或气流以及矿坑水的冲刷腐蚀,要承载凿岩机活塞每分钟3 000次以上的高频冲击功,在拉压、弯曲及扭转应力的受力状况下高速冲击岩石。由于使用条件的限制和复杂的受力状况,高品质的重载钎具用钢一方面要求具有良好的强韧性匹配以保证其耐磨损和抗冲击性能,另一方面又要求其具有良好的加工工艺性能和一定的抗腐蚀能力。
钎具钢的组织结构是各生产工艺系统控制的结果,包括对钎钢轧材纯净性和组织均匀性的控制、钎具的成形工艺以及后续的渗碳及热处理组织性能控制,因此,对钎具钢进行系统研究以提高钎具产品质量及使用寿命是十分必要的。通过对钎具的缺陷分析以及国内外优质钎具的组织性能对比得出,优质钎具在渗碳层外表面和基体之间的过渡区域存在大量下贝氏体,使高硬度的表面与韧性较好的心部有更好的组织过渡,是造成钎具质量存在差异的主要原因之一。
为延长重载钎具疲劳寿命,轧材需控制夹杂物形态、尺寸及数量从而提高纯净度,改善带状组织特征以促进显微组织均匀化,而渗碳和后续热处理工艺控制对于改善疲劳寿命影响最为显著。对于渗碳工艺而言,需综合考虑渗碳工艺参数对碳浓度分布、显微组织和硬度分布的影响,避免在渗碳层表面形成残余奥氏体从而降低硬度,同时还要考虑成本。而对于渗碳后淬回火工艺而言,淬火的冷却方式是影响钎具钢渗碳和热处理后冲击韧性和组织性能分布的关键因素。重型钎具的最佳组织结构应为:表面为高硬度高耐磨性的高碳马氏体组织;过渡区为马氏体+下贝氏体的混合组织;心部为韧性较好的贝氏体组织,同时,具有组织性能平缓过渡的渗碳层。
本文归纳了重型钎具的服役条件及各部件的性能要求,对目前重型钎具的失效方式、国内外钎具的组织性能对比进行介绍,分析了目前关于重载钎具用钢组织性能控制关键因素的研究现状,并针对重载钎具用钢组织性能系统控制目标的实现提出了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋波
刘雅政
周乐育
张朝磊
陈列
王国存
关键词:  重型钎具用钢  渗碳  热处理  组织性能  强韧化    
Abstract: Rock drill tool is made of spindly bars including drill bit, drill rod and shank. It is mainly used to drill rock in the construction projects, such as mining, road construction, hydropower construction, urbanization and so on. The heavy drill tools will be severely worn by the rock and eroded by the high pressure water or air and mine water in working condition. Besides, it will also bear the high-frequency impact more than 3 000 times per minute from piston in rock drill. At the same time, the heavy drill tools hit the rock with high speed in the working condition of tension-compression, bending and torsion. Consequently, high quality steel for heavy drill tools should have good combination of strength and toughness to ensure the wear and shock resistances, good processing performance and resistance to corrosion.
The microstructure of drill steel is determined by the systematic manufacturing processes including the control of the purity and microstructure uniformity of rolled products, the control of forming process of drill tool and the control of carburizing process and heat treatment microstructures. Consequently, it is very important to systematically investigate the drill steel in order to improve the quality and service life. The failure of drill tool was analyzed and the microstructures and properties of high quality drill tools at home and abroad were compared. Based on the analysis, it can be concluded that there is large amount of lower bainite at the transition zone between the outer surface and the matrix of high quality drill tools which can provide a good microstructure transition for the hard surface and ductile center. This is one of the reasons why there are differences in the quality of different drill tools.
To improve the fatigue life of heavy drill tools, the morphology, size and quantity of inclusions in rolled bars should be controlled to improve the purity and the banded microstructure should be improved to promote the uniformity. Besides, it is the most remarkable to improve the fatigue life by optimizing the carburizing and heat treatment processes. The effects of carburizing parameters on the distribution of carbon content, microstructure and hardness should be considered comprehensively in order to avoid the formation of retained austenite at the surface of carburized layer and to avoid the reduction of the hardness. In addition, the cost of carburizing process should also be considered. For the quenching and tempering processes after carburizing, the cooling way of quenching is the key factor influencing the toughness and distribution of microstructure and properties of drill steel after carburizing. The optimal microstructure design of heavy drill tools should be as follows: high carbon martensite with high hardness and wear resistance at the surface, mixed microstructure of martensite and lower bainite at the transition zone, ductile bainite at the center and carburized layer with smoothly transitional microstructures and properties.
In this paper, the service condition and performance requirements of each part of the heavy drill tool were concluded. The failure way of heavy drill tool at present and the comparison of the microstructures and properties of the drill tools at home and abroad were both introduced. In addition, the key factors to control the microstructure and property of the steel for heavy drill tool were analyzed. At last, the conclusion and expectation were made to fulfill the systematic control of the microstructure and property of the steel for heavy drill tool.
Key words:  steel for heavy drill    carburizing    heat treatment    microstructure and property    strengthening and toughening
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TG141.1  
基金资助: 中央高校基本科研业务费(FRF-TP-16-032A1)
作者简介:  蒋波,北京科技大学讲师,入选2017年度青海省第二批“高端创新人才千人计划”拔尖人才项目。以第一作者在国内外学术期刊上发表论文20余篇,申请国家发明专利7项,其中授权5项。刘雅政,北京科技大学教授,博士研究生导师,享受国务院政府特殊津贴。lyzh@ustb.edu.cn
引用本文:    
蒋波, 刘雅政, 周乐育, 张朝磊, 陈列, 王国存. 重型钎具用钢组织性能控制的研究现状[J]. 材料导报, 2019, 33(5): 854-861.
JIANG Bo, LIU Yazheng, ZHOU Leyu, ZHANG Chaolei, CHEN Lie, WANG Guocun. Research Status of Microstructure and Properties Control of Steel for Heavy Drill. Materials Reports, 2019, 33(5): 854-861.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905018  或          http://www.mater-rep.com/CN/Y2019/V33/I5/854
1 Hu M, Dong X Y. Rock Drilling Machines and Pneumatic Tools,2009(2),26(in Chinese).
胡铭,董鑫业.凿岩机械气动工具,2009(2),26.
2 Hong D L, Gu T H, Xu S G, et al. Drill steel and drill tool, Metallurgical Industry Press, China,2000(in Chinese).
洪达灵,顾太和,徐曙光,等.钎钢与钎具,冶金工业出版社,2000.
3 Xu B, Tang W L, Lu Y X. Mining & Processing Equipment,2010,38(24),1(in Chinese).
徐斌,唐文龙,鲁玉祥.矿山机械,2010,38(24),1.
4 Hu M, Dong X Y. Rock Drilling Machines and Pneumatic Tools,2015(1),7(in Chinese).
胡铭,董鑫业.凿岩机械气动工具,2015(1),7.
5 Zhang H M. Technological Development of Enterprise,2013,32(2),168(in Chinese).
张厚明.企业技术开发,2013,32(2),168.
6 Zhang J G. Modern Machinery,2013(6),28(in Chinese).
张金刚.现代机械,2013(6),28.
7 Hu M, Dong X Y. Rock Drilling Machines and Pneumatic Tools,2010(1),37(in Chinese).
胡铭,董鑫业.凿岩机械气动工具,2010(1),37.
8 周爱民.第十四届全国钎钢钎具年会.井冈山,2008,pp.10.
9 Dong X Y, Li X Q. Rock Drilling Machines and Pneumatic Tools,1993(3),32(in Chinese).
董鑫业,李秀清.凿岩机械气动工具,1993(3),32.
10 Zhang H B, Huang L. Rock Drilling Machines and Pneumatic Tools,1992(3),22(in Chinese).
张汉斌,黄澜.凿岩机械气动工具,1992(3),22.
11 Huang H. Rock Drilling Machines and Pneumatic Tools,1991(2),28(in Chinese).
黄虹.凿岩机械气动工具,1991(2),28.
12 Krupp U, Düber O, Christ H J, et al. Materials Science and Engineering A,2007,462(1-2),174.
13 Zhao R H. Bengang Technology,1996(3),41(in Chinese).
赵瑞环.本钢技术,1996(3),41.
14 Zhang G J, Ye L Y, Zhao Z H. Rock Drilling Machines and Pneumatic Tools,2004(1),50(in Chinese).
张国榉,叶凌云,赵钟会.凿岩机械气动工具,2004(1),50.
15 Peng J, Ou M J, Long Q. Journal of Guizhou University (Natural Sciences),2009,28(6),43(in Chinese).
彭俊,欧梅桂,龙潜.贵州大学学报(自然科学版),2009,28(6),43.
16 Tezcan S. Engineering Failure Analysis,2006,13(7),1108.
17 Osman A, Ahmet C C, James P, et al. Surface & Coatings Technology,2007,201(15),5979.
18 Wang C, Li Q. Gansu Metallurgy,2008,60(6),22(in Chinese).
王晨,李琦.甘肃冶金,2008,60(6),22.
19 Wang Y H, Cheng J Q, Liu Z X. Foundry Technology,2005,26(12),1109(in Chinese).
王元辉,程巨强,刘志学.铸造技术,2005,26(12),1109.
20 Ejerhed J, From M, Fattah A, et al. Heat resistant steel alloys: Atlas Copco. Bachelor’s Thesis, Uppsala University, Sweden,2015.
21 Li B X. Rock Drilling Machines and Pneumatic Tools,1999(2),55(in Chinese).
黎炳雄.凿岩机械气动工具,1999(2),55.
22 Chen L. Rock Drilling Machines and Pneumatic Tools,2000(4),34(in Chinese).
陈琳.凿岩机械气动工具,2000(4),34.
23 Chen R J, Xu J J. Hot Working Technology,2008,37(20),96(in Chinese).
陈儒军,徐家军.热加工工艺,2008,37(20),96.
24 Li Y, Xu N, Wu X, et al. Engineering Failure Analysis,2012,20,35.
25 Chaijaruwanich A, Thongthip C. International Journal of Mechanical Engineering and Robotics Research,2016,5(4),251.
26 Zhao T L, Liu Z Y, Du C W, et al. The Open Materials Science Journal,2016,10(1),8.
27 Zhu H W, Liu Y Z, Zhou L Y, et al. Journal of University of Science and Technology Beijing,2013,35(5),613(in Chinese).
朱洪武,刘雅政,周乐育,等.北京科技大学学报,2013,35(5),613.
28 Zhu H W, Liu Y Z, Zhou L Y, et al. International Journal of Minerals, Metallurgy and Materials,2012,19(5),421.
29 Jiang B, Dai G Y, Yan Y M, et al. Materials Review A: Review Papers,2017,31(4),70(in Chinese).
蒋波,戴光咏,闫永明,等.材料导报:综述篇,2017,31(4),70.
30 Yan Y M, Liu Y Z, Zhou L Y, et al. Materials Science and Technology,2013,21(5),102(in Chinese).
闫永明,刘雅政,周乐育,等.材料科学与工艺,2013,21(5),102.
31 Deldar S, Mirzadeh H, Parsa M H. Engineering Failure Analysis,2016,68,132.
32 Zhu H W, Liu Y Z, Xu S, et al. Journal of University of Science and Technology Beijing,2013,35(3),312(in Chinese).
朱洪武,刘雅政,徐盛,等.北京科技大学学报,2013,35(3),312.
33 Xu S, Liu Y Z, Zhou L Y, et al. Transactions of Materials and Heat Treatment,2014,35(1),146(in Chinese).
徐盛,刘雅政,周乐育,等.材料热处理学报,2014,35(1),146.
34 Huang B, Zhu H W, Yang Z, et al. Transactions of Materials and Heat Treatment,2013,34(7),136(in Chinese).
黄斌,朱洪武,杨忠,等.材料热处理学报,2013,34(7),136.
35 He Z G. Heat Treatment,2007,22(1),60(in Chinese).
何祝根.热处理,2007,22(1),60.
36 Wada T, Wada H, Elliott J F. Metallurgical and Materials,1972,3(11),2865.
37 Gan Y C. Transactions of Metal Heat Treatment,1998,19(2),56(in Chinese).
甘悦成.金属热处理学报,1998,19(2),56.
38 Wang H J. Heat Treatment of Metals,1992(10),12(in Chinese).
王慧君.金属热处理,1992(10),12.
39 Li B X. Rock Drilling Machines and Pneumatic Tools,2009(4),51(in Chinese).
黎炳雄.凿岩机械气动工具,2009(4),51.
40 Ye L Y, Li Z A. Rock Drilling Machines and Pneumatic Tools,1999(3),4(in Chinese).
叶凌云,李宗安.凿岩机械气动工具,1999(3),4.
41 Hong Z S, Yin F C. Mining & Processing Equipment,1995(3),25(in Chinese).
洪振声,尹付成.矿山机械,1995(3),25.
42 Guan L, Chen H Z,Zheng C W. Bearing,2001(10),19(in Chinese).
关力,陈卉珍,郑从伟.轴承,2001(10),19.
43 Yan Y M, Liu Y Z, Zhou L Y, et al. Transactions of Materials and Heat Treatment,2014,35(2),110(in Chinese).
闫永明,刘雅政,周乐育,等.材料热处理学报,2014,35(2),110.
44 Dhua S K, Ray A, Sarma D S. Materials Science and Engineering A,2001,318(1-2),197.
45 Cheng J Q, Liu Z X, Wang Y H. Heat Treatment of Metals,2008,33(5),72(in Chinese).
程巨强,刘志学,王元辉.金属热处理,2008,33(5),72.
46 Zou D, Ying H, Zhang W, et al. Journal of Iron and Steel Research, International,2010,17(8),50.
47 Mayer S, Leitner H, Scheu C, et al. Steel Research International,2009,80(1),89.
48 Preciado M, Bravo P M, Alegre J M. Journal of Materials Processing Technology,2006,176(1-3),41.
49 Jiang B, Mei Z, Zhou L, et al. Materials Science and Engineering A,2016,675,361.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[3] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[4] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[5] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[6] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[7] 何承绪, 涂蕴超, 孟利, 杨富尧, 刘洋, 马光, 韩钰, 陈新. 超薄取向硅钢组织及织构与磁性能的关系[J]. 材料导报, 2019, 33(6): 1027-1031.
[8] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[9] 熊斯, 唐鑫, 王春霞, 胡清华. 焊后热处理对Al-Mg-Zn(-Sc-Zr)合金焊丝焊接7075铝合金焊接接头组织和性能的影响[J]. 材料导报, 2019, 33(16): 2720-2724.
[10] 樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
[11] 张振扬, 赵利忠, 张家胜, 钟喜春, 刘仲武. La2Fe14B和Ce2Fe14B合金在快淬和热处理过程中相析出行为的比较[J]. 《材料导报》期刊社, 2018, 32(8): 1271-1275.
[12] 张玉, 黄晓锋, 马颖, 闫峰云, 李元东, 郝远. 添加Sm对不同尺寸Mg-6Zn-0.4Zr镁合金坯料非枝晶组织演变的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1283-1288.
[13] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[14] 肖水清, 刘杰, 肖白军, 邓欣, 伍尚华. 实现Ti(C,N)基金属陶瓷强韧化的技术路径[J]. 《材料导报》期刊社, 2018, 32(7): 1129-1138.
[15] 李安敏,史君佐,谢明款. 高熵合金力学性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 461-466.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed