Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 862-870    https://doi.org/10.11896/cldb.201905019
  金属与金属基复合材料 |
颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试
邱博, 邢书明, 董琦
北京交通大学机械与电子控制工程学院,北京 100044
Characterization of Interfacial Bonding Strength of Particles Reinforced MetalMatrix Composites: Theory Model, Finite Element Simulation andExperimental Test
QIU Bo, XING Shuming, DONG Qi
School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044
下载:  全 文 ( PDF ) ( 3406KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属基复合材料的综合性能优异,应用领域广泛,在这类材料中,增强相与基体之间的界面结合情况是影响材料性能的关键因素之一,而界面结合强度是衡量界面结合情况最重要的定量化指标。到目前为止,研究者们已经提出了许多测量复合材料界面强度的方法,包括早期就已经提出并一直沿用的微观力学测试方法,如单纤维拉出法、单纤维断裂法和微粘结测试法等,以及以材料宏观性能来评价界面应力状态的宏观实验方法,如横向弯曲实验、横向拉伸实验以及导槽剪切实验等。根据测量过程是否需要对界面进行破坏又可以分为声发射技术、声显微技术、拉曼光谱等技术的非破坏性方法以及一些需要破坏界面从而达到测量目的的破坏性方法。
虽然诸多学者对复合材料界面结合强度的测量与表征做了大量的研究工作并取得了重大进展,但这些测试方法基本上都是基于纤维增强金属复合材料的成果,对于颇有前景的颗粒增强金属复合材料而言,这些测试手段却因颗粒增强相在形状和尺度上的特殊性而难以奏效,从而造成定量表征颗粒增强金属基复合材料界面结合强度相关研究的发展较为缓慢。
为了解决颗粒增强相与金属基体界面强度难以测量的问题,许多研究者在建立理论模型的基础上通过有限元模拟的方法来表征界面的结合强度。这种方法可以用来预测颗粒增强金属基复合材料的界面结合强度,具有一定的指导意义,但是计算机模拟的方法在建模及计算过程中很大程度上对颗粒增强相的形状、分布状态以及界面的形变方式进行了简化处理,导致其结果与实际情况往往存在一定的误差。在这种情况下,研究者们开始寻求通过实验测试的方法来定量表征颗粒与金属基体之间的界面结合强度,也就是通过测量界面处的剪切强度或拉伸强度来表征界面的结合强度。
本文针对颗粒增强金属基复合材料,归纳了国内外研究者们基于不同原理对界面结合强度进行研究和预测的理论模型,论述了对界面结合强度进行定量表征的有限元模拟测试法以及实验测试法,以期在一定程度上为界面设计与结合强度控制提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邱博
邢书明
董琦
关键词:  金属基复合材料  颗粒增强  界面  结合强度    
Abstract: Metal matrix composites show excellent comprehensive properties and wide applications, in which the interfacial bonding of the reinforcement phase and the matrix is one of the key factors affecting the properties of the materials, and the interfacial bonding strength is the most important quantitative parameter to measure the interface bonding. So far, researchers have developed numerous methods for measuring the interfacial strength of composite materials, including micromechanical measurements and macroscopic experimental method. The former has been proposed in the early stage and is still in use today, including single-fiber pull-out method, single fiber fracture method and micro-bond test method. The latter evaluate the interfacial stress state based on the macroscopic properties of materials, including transverse bending test, transverse tensile test and guide-groove shear test. Besides, according to whether there is a need to destroy the interface during the measurement process, the measu-ring method can be divided into non-destructive methods such as acoustic emission, acoustic microscopy, Raman spectroscopy and destructive methods which need to destroy the interface to achieve measurement.
Great efforts have been put into the measurement and characterization of the interfacial bonding strength of composites and fruitful results have been achieved over the years. Nevertheless, these methods mainly focus on fiber reinforced metal composites. For the particles reinforced metal composites, these testing methods are difficult to work because of the particularity of particle phases in shape and size, which lead to the lag of development in quantitative characterization of interfacial bonding strength of particle reinforced metal matrix composites.
Aiming at measuring the interface strength between reinforcement and matrix, finite element simulation based on the theoretical model is employed by researchers to characterize the bonding strength of the interface, which possesses a certain instructive in the prediction of interfacial bonding strength of composites as well. However, in the process of modeling and calculation, the shape, distribution state of particles and the deformation mode of the interface are simplified to a large extent, consequently, there is always a certain error between the result and the actual situation. In this case, the researchers began to seek to quantitatively characterize the interface bonding strength by means of experimental met-hods, that is characterizing the interfacial bonding strength by measuring the shear strength or tensile strength at the interface.
In this article, a theoretical model of interfacial bonding strength prediction based on different principles is summarized for particle reinforced metal matrix composites. The finite element simulation method and experimental testing method for quantitative characterization of interface bon-ding strength are discussed. It is expected to provide a reference for the interface design and the control of interface strength.
Key words:  metal matrix composites    reinforced with particles    interface    bonding strength
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TB331  
基金资助: 中央高校基本科研业务费专项资金(2018YJS139)
作者简介:  邱博,2016年7月毕业于北京交通大学,获得机械工程硕士学位。现为北京交通大学机电学院在读博士研究生,在邢书明教授的指导下进行研究。目前主要研究领域为颗粒增强金属基抗磨复合材料。邢书明,北京交通大学机电学院教授、博士研究生导师。主要从事金属材料先进成形技术与理论、现代凝固控制技术与理论、半固态新材料等领域的相关研究,并取得了大量的创新性研究成果,以第一或通讯作者发表论文百余篇,获授权或公开发明专利20余项。smxing@bjtu.edu.cn
引用本文:    
邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
QIU Bo, XING Shuming, DONG Qi. Characterization of Interfacial Bonding Strength of Particles Reinforced MetalMatrix Composites: Theory Model, Finite Element Simulation andExperimental Test. Materials Reports, 2019, 33(5): 862-870.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905019  或          http://www.mater-rep.com/CN/Y2019/V33/I5/862
1 Hahm M G, Nam J, Choi M. Nanotechnology,2015,26(21),603.
2 Muralidharan N, Chockalingam K, Dinaharan I, et al. Journal of Alloys & Compounds,2018,735(25),2167.
3 Suganya P G, Subramanian R, Murugan N, et al. Journal of Mechanical Science & Technology,2017,31(8),3755.
4 Hai Q. Computational Materials Science,2014,89(12),102.
5 You J H, Lutz W, Gerger H, et al. International Journal of Solids & Structures,2009,46(25-26),4277.
6 Nishikawa M, Okabe T, Takeda N. Materials Science & Engineering A,2008,480(1-2),549.
7 Nishikawa M, Okabe T, Hemmi K, et al. International Journal of Solids & Structures,2008,45(14-15),4098.
8 Qin W Z, Yu J R, He J Q, et al. Chinese Polymer Bulletin,2013(2),14(in Chinese).
秦文贞,于俊荣,贺建强,等.高分子通报,2013(2),14.
9 Wood J R, Zhao Q, Frogley M D, et al. Physical Review B,2000,62(11),7571.
10 Silk J R, Dashwood R J, Chater R J. Surface & Interface Analysis,2011,43(1-2),488.
11 Song J, Guo Q, Ouyang Q, et al. Materials Science & Engineering A,2015,644,79.
12 Mortensen A, Llorca J. Materials Today,2010,9(6),1.
13 Chen G, Yang W, Xin L, et al. Journal of Alloys & Compounds,2018,735(25),777.
14 Muolo M L, Valenza F, Passerone A, et al. Materials Science & Engineering A,2008,495(1-2),153.
15 Quéré D. Annual Review of Materials Research,2008,38(38),71.
16 Sobczak N, Singh M, Asthana R. Current Opinion in Solid State & Materials Science,2005,9(4),241.
17 Fang X, Fan T X, Zhang D. Materials Review A: Review Papers,2013,27(6),130(in Chinese).
房鑫,范同祥,张荻.材料导报:综述篇,2013,27(6),130.
18 Zhang C, Fan T, Cao W, et al. Acta Materialia,2009,57(12),3623.
19 Chen J, Gu M Y, Pan F S. Metallurgical & Materials Transactions A,2001,32(8),2033.
20 Dudiy S, Lundqvist B. Physical Review B,2001,64(4),314.
21 Smith J R, Zhang W. Acta Materialia,2000,48(18-19),4395.
22 Zhang W, Smith J R. Physical Review Letters,2000,85(15),3225.
23 Siegel D J, Hector L G, Adams J B. Physical Review B,2002,65(8),5415.
24 Hoekstra J, Kohyama M. Physical Review B,1998,57(4),2334.
25 Hong T, Smith J R, Srolovitz D J. Journal of Adhesion Science and Technology,1994,8(8),837.
26 Li S, Arsenault R J, Jena P. Journal of Applied Physics,1988,64(11),6246.
27 Tsoga A, Ladas S, Nikolopoulos P. Acta Materialia,1997,45(9),3515.
28 Li H T, Chen L F, Yuan X, et al. Journal of the American Ceramic Society,2011,94(S1),154.
29 Shao J C, Xiao B L, Wang Q Z, et al. Composites Science & Technology,2011,71(1),39.
30 Suh Y S, Joshi S P, Ramesh K T. Acta Materialia,2009,57(19),5848.
31 Qu S, Siegmund T, Huang Y, et al. Composites Science & Technology,2005,65(7-8),1244.
32 Kang G, Shao X, Guo S. Materials Science & Engineering A,2008,487(1-2),431.
33 Wang X, Li J, Zhang Y, et al. Journal of Alloys & Compounds,2016,695,2124.
34 Meng Q, Wang Z. Engineering Fracture Mechanics,2015,142,170.
35 Shao X J, Kang G Z, Guo S J, et al. Acta Material Composite Sinica,2010,27(3),128(in Chinese).
邵雪娇,康国政,郭素娟,等.复合材料学报,2010,27(3),128.
36 Chawla N, Ganesh V V, Wunsch B. Scripta Materialia,2004,51(2),161.
37 Teng Y H, Boyd J D. Composites,1994,25(10),906.
38 陈刚,赵玉涛,张振亚,等.中国专利,CN102494997A,2012.
39 Bao C G, Wang E Z, Gao Y M, et al. Journal of Xi’an Jiaotong University,2000,34(1),41(in Chinese).
鲍崇高,王恩泽,高义民,等.西安交通大学报,2000,34(1),41.
40 Wang J. Effect of interface improvement on mechanical properties of Al2O3p/steel composites. Master’s Thesis, Kunming University of Science and Technology, China,2015(in Chinese).
王健.界面改善对Al2O3p/钢基复合材料力学性能的影响.硕士学位论文,昆明理工大学,2015.
41 Guo X, Guo Q, Li Z, et al. Scripta Materialia,2016,114,56.
42 Kim Y, Lee J C. Materials Science & Engineering A,2006,420(1),8.
43 Jarzaber Dariusz M, Chmielewski M, et al. Composites Part A,2015,76,124.
44 Dariusz M, Michal Milczarek, Tomasz Wojciechowski, et al. Ceramics International,2017,43(6),5283.
45 Chen C, Xie Y, Yin S, et al. Materials Letters,2016,173,76.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[5] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[6] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[7] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[8] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[9] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[10] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[11] 李萍,左迎峰,吴义强,赵星,王健. 秸秆人造板制造及应用研究进展[J]. 材料导报, 2019, 33(15): 2624-2630.
[12] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[13] 杨世杰, 李元东, 曹驰, 董澎源, 李嘉铭, 李明. A356覆层温度对AZ31/A356轧制复合板界面组织及力学性能的影响[J]. 材料导报, 2019, 33(14): 2397-2402.
[14] 董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
[15] 谢敬佩, 刘哲, 王爱琴, 吕世敬, 毛志平, 刘帅洋, 田捍卫. 铸轧铜铝复合板界面演变规律研究[J]. 材料导报, 2019, 33(10): 1702-1705.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed