Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1910-1918    https://doi.org/10.11896/cldb.18040152
  高分子与聚合物基复合材料 |
SiO2的功能化改性及其与聚合物基体的界面研究进展
董雨菲1,2, 马建中1,2, 刘超3, 鲍艳1,2, 林阳3, 吴英柯1,2
1 陕西科技大学轻工科学与工程学院,西安 710021
2 陕西科技大学轻化工程国家级实验教学示范中心,西安 710021
3 陕西科技大学陕西省轻化工助剂化学与技术协同创新中心,西安 710021
Research Progress on Functional Modification of SiO2 and Its Interface with Polymer Matrix
DONG Yufei1,2, MA Jianzhong1,2, LIU Chao3, BAO Yan1,2, LIN Yang3, WU Yingke1,2
1 College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an 710021
2 National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021
3 Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi’an 710021
下载:  全 文 ( PDF ) ( 29312KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米二氧化硅(SiO2)作为一种最常用的无机纳米材料,受到了各个领域研究者的广泛关注且已得到实际应用。以纳米SiO2作为改性填料,得到的聚合物纳米复合材料兼具了聚合物基体和纳米SiO2二者的优点,因而表现出优异的力学性能、热学性能、光学性能以及化学稳定性等。但是纳米SiO2表面富含大量活性硅羟基,极易团聚,用一般方法难以实现其在纳米尺度上的均匀分散以及与高分子基体材料间良好的界面粘结。因此,在制备纳米SiO2改性的聚合物基纳米复合材料前,研究者们常通过对SiO2进行表面改性,以改善其与聚合物基体的界面相容性及其在聚合物基体中的分散性,并赋予其一定的功能性。目前,纳米SiO2的改性方法有很多,总的来说主要为物理改性和化学改性,而根据改性剂的种类不同,又可以分为有机改性、无机改性和杂化改性三种。聚合物/纳米SiO2复合材料的优异性能不仅取决于有机聚合物和无机纳米SiO2两组分的性能,还取决于两者间的界面结构和形态特征。尽管界面相的体积含量只占总体积含量中很少的一部分,但是界面间的相互作用、界面处聚合物结构与基体结构的差异、界面相微观形貌的变化等都会使整个复合体系的宏观性能发生明显的改变。因而针对有机聚合物与无机纳米SiO2间的界面研究对于纳米复合材料性能的优化设计具有重要的科学意义。近年来,关于聚合物与无机纳米粒子之间的界面研究主要集中在两个方面:一方面是聚合物及无机纳米粒子表面的物理、化学性质对界面处性能的影响;另一方面是聚合物基体与无机纳米粒子之间的界面相互作用对复合材料性能的影响。目前,常通过现代仪器分析技术测试界面相的微观形貌(如粗糙程度、厚度等)及化学结构(如化学键合方式、键能等),或结合分子动力学模拟阐明分子集合体结构以及相互间的微观作用机理,从理论角度更准确地解释界面性能和界面行为,为复合材料的优化设计提供理论基础和新方法。本文归纳了有机改性、无机改性和杂化改性三种方法在纳米SiO2的功能化方面的研究进展,讨论并对比了不同改性方法的优势和缺点,较全面地综述了当前现代仪器分析表征和分子动力学模拟在聚合物/SiO2界面作用研究方面的最新进展,最后展望了纳米SiO2与聚合物基体界面作用未来研究的工作重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董雨菲
马建中
刘超
鲍艳
林阳
吴英柯
关键词:  纳米SiO2  功能化  聚合物基  界面  有机改性  无机改性  杂化改性    
Abstract: As one of the most commonly used inorganic nanomaterials, nano-silica (SiO2) has been widely concerned and applied by researchers in various fields. Nano-SiO2 has been used as the modified filler, its polymer nanocomposites combine the advantages of both polymer matrix and nano-SiO2, and thus show excellent mechanical properties, thermal properties, optical properties and chemical stability, etc. However, the surface of nano-SiO2 is rich in a large amount of active silicone hydroxyl, which is easy to aggregate. So, it’s difficult to obtain uniform dispersion on the nanometer scale and good interfacial adhesion between nano-SiO2 and polymer matrix materials by general methods. Therefore, before the preparation of polymer-based nanocomposites modified by nano-SiO2, surface modification is required to improve the interfacial compatibility between SiO2 particles and polymer matrix and its dispersibility in the polymer matrix, and give it a certain degree of functionality. At present, there are many modification methods for nano-SiO2. In general, it is mainly physical modification and chemical modification, and according to different types of modified agents, it can be divided into organic modification, inorganic modification and hybrid modification. The excellent properties of polymer/nano SiO2 composites depend not only on the properties of the two components of organic polymer and inorganic nano-SiO2, but also on the interfacial structure and morphological characteristics between them. Although the volume content of interface phase is only a small part of total volume content, but the interaction between the interfaces, the differences between polymer structure and matrix structure at the interface, and the changes in the microstructure of interface phase and so on will significantly change the macro-performance of whole composite system. Therefore, the interface research between them has important scientific significance for the optimization design of nanocomposite properties. In recent years, the research of interface between polymer and inorganic nanoparticles mainly focused on two aspects. On the one hand, the physical and chemical properties of the surface of polymer and inorganic nanoparticles affect the properties at the interface. On the other hand, the interfacial interaction between polymer matrix and inorganic nanoparticles affects the properties of its composites. At present, the microstructure (such as roughness, thickness, etc.) and chemical structure (such as chemical bonding, bond energy, etc.) of the interface phase are often tested by modern instrumental analysis technology, or the molecular dynamics simulation is used to elucidate the molecular assembly structure and the mechanism of mutual interaction. Which can explain the interface performance and interface behavior more accurately from a theoretical perspective, and provide a theoretical basis and new methods for the optimal design of composites. In this paper, the research progress of organic modification, inorganic modification and hybrid modification on the functionalization of nano-SiO2 is summarized. The advantages and disadvantages of different modification methods are discussed and compared, and recent advances in the research of polymer/SiO2 interface in modern instrumental analysis characterization and molecular dynamics simulation are reviewed in detail. Finally, the future research focus of the interaction between nano-SiO2 and polymer matrix is forecasted.
Key words:  nano-silica    functionalization    polymer matrix    interface    organic modification    inorganic modification    hybrid modification
                    发布日期:  2019-05-21
ZTFLH:  O647.11  
  O613.72  
  TQ019  
基金资助: 国家重点研发计划项目(2017YFB0308602);陕西省自然科学基础研究计划项目(2018JQ5211)
通讯作者:  majz@sust.edu.cn   
作者简介:  董雨菲,2017年6月毕业于陕西科技大学,获得工学学士学位。现就读于陕西科技大学,攻读硕士学位,目前主要研究方向为聚氨酯/SiO2纳米复合材料的界面研究。马建中,1983年获陕西科技大学皮革工程学士学位;1989年获陕西科技大学皮革化学与工程硕士学位;1998年获浙江大学高分子化学与物理理学博士学位。主要研究方向为有机/无机纳米复合材料。
引用本文:    
董雨菲, 马建中, 刘超, 鲍艳, 林阳, 吴英柯. SiO2的功能化改性及其与聚合物基体的界面研究进展[J]. 材料导报, 2019, 33(11): 1910-1918.
DONG Yufei, MA Jianzhong, LIU Chao, BAO Yan, LIN Yang, WU Yingke. Research Progress on Functional Modification of SiO2 and Its Interface with Polymer Matrix. Materials Reports, 2019, 33(11): 1910-1918.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040152  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1910
1 Han J X, She L J, Zhai L X, et al. Materials Review,2010,24(s1),6(in Chinese).
韩静香,佘利娟,翟立新,等.材料导报,2010,24(专辑15),6.
2 Li M, Lam J W Y, Mahtab F, et al. Journal of Materials Chemistry B,2013,1(5),676.
3 Rimola A, Costa D, Sodupe M, et al. Chemical Reviews,2013,113(6),4216.
4 Mamaeva V, Sahlgren C, Lindén M. Advanced Drug Delivery Reviews,2013,65(5),689.
5 Perez R A, Singh R K, Kim T H, et al. Materials Horizons,2017,5(4),772.
6 Suzuki R, Kishida M, Hirano T. Journal of Applied Physics,2013,114(13),133502.
7 Li X, Yang Y, Yang Q. Journal of Materials Chemistry A,2013,1(5),1525.
8 Shan W, Liao M Y. Chinese Polymer Bulletin,2006(3),1 (in Chinese).
单薇,廖明义.高分子通报,2006(3),1.
9 Gong X Q, Wang Y Q, Zhang L. Materials Review B: Research Papers,2016,30(2),52(in Chinese).
公绪强,王雅祺,张利.材料导报:研究篇,2016,30(2),52.
10 Suthabanditpong W, Takai C, Fuji M, et al. Physical Chemistry Chemical Physics,2016,18(24),16293.
11 Wang Y, Guo Y, Cui R, et al. Science & Engineering of Composite Materials,2014,21(4),471.
12 Raja V L, Kumaravel A. Polymers & Polymer Composites,2015,23(6),427.
13 He S T, Liu B C. Materials Research and Application,2016,10(2),71(in Chinese).
何淑婷,刘宝春.材料研究与应用,2016,10(2),71.
14 Ye G B. Synthesis and properties of polymer/SiO2 hybrids. Master’s Thesis, South China University of Technology, China,2015(in Chinese).
叶光宝.聚合物/SiO2杂化材料的制备与性能.硕士学位论文,华南理工大学,2015.
15 He J L, Peng S M, Zhou Y, et al. Proceedings of the CSEE,2016,36(24),6596(in Chinese).
何金良,彭思敏,周垚,等.中国电机工程学报,2016,36(24),6596.
16 Sun R. Characterisation of interfacial states in the SiO2/LDPE nanocomposite from first principles computations. Master’s Thesis, Harbin University of Science and Technology, China,2016(in Chinese).
孙蕊.纳米SiO2与聚乙烯基体界面态第一性原理计算研究.硕士学位论文,哈尔滨理工大学,2016.
17 Zhou H, Wang H, Niu H, et al. Advanced Functional Materials,2013,23(13),1664.
18 Yu M, Jambhrunkar S, Thorn P, et al. Nanoscale,2013,5(1),178.
19 Yang W, Ding P, Zhou L, et al. Applied Surface Science,2013,282(5),38.
20 Zhang H. Organically modified silica prepared by mechanochemical and the study of its composite materials. Master’s Thesis, Wuhan University of Technology, China,2014(in Chinese).
张慧.机械力化学法制备有机改性二氧化硅及其复合材料的研究.硕士学位论文,武汉理工大学,2014.
21 Cao P, Ni Y, Zou R, et al. RSC Advances,2014,5(5),3417.
22 Namvar-Mahboub M, Pakizeh M. Separation & Purification Technology,2013,119(46),35.
23 Zhang Y, Chen H, Wen Y, et al. Colloids & Surfaces A Physicochemical & Engineering Aspects,2014,441(3),16.
24 Lin B L, Cui S, Liu X Y, et al. Journal of Wuhan University of Technology (Materials Science Edition),2013,28(5),916.
25 Zhang Y H, Zhai L L, Wang Y, et al. Journal of Materials Science and Engineering,2012,30(5),93(in Chinese).
张云浩,翟兰兰,王彦,等.材料科学与工程学报,2012,30(5),93.
26 Yang L. The research of structure and properties of nano-SiO2/NR composite material. Master’s Thesis, Hainan University, China,2011(in Chinese).
杨蕾.纳米SiO2/NR复合材料结构与性能的研究.硕士学位论文,海南大学,2011.
27 Morita S, Iijima M, Tatami J. Advanced Powder Technology,2016,28(1),30.
28 Dou W, Niu Y, Liu X, et al. Journal of Sol-Gel Science and Technology,2013,68(2),302.
29 Maleki H, Dures L, Portugal A. Journal of Non-Crystalline Solids,2014,385(2),55.
30 Yuan Y, Chen N, Liu R, et al. Materials Research Bulletin,2014,50(2),392.
31 Fouconnier B, Románguerrero A, Lópezserrano F. Journal of Macromole-cular Science Part A,2016,53(7),403.
32 Sun Z, Zhang L X, Qi J L, et al. Materials & Design,2015,88,51.
33 Mallakpour S, Marefatpour F. Progress in Organic Coatings,2014,77(8),1271.
34 Mallakpour S, Naghdi M. Polymer,2016,90,295.
35 Vives S, Meunier C. Materials Letters,2013,91(2),165.
36 Wu Y T, Zhang Q F, Tong X F, et al. Journal of Shaanxi University of Science & Technology,2017,35(3),63(in Chinese).
伍媛婷,张琴帆,仝小飞,等.陕西科技大学学报,2017,35(3),63.
37 Tao Y. Surface modified of monodisperse colloidal silica and preparation of SiO2/Ag core/shell particles. Master’s Thesis, East China Normal University, China,2009(in Chinese).
陶妍.单分散二氧化硅的表面改性及二氧化硅/银复合粒子的制备.硕士学位论文,华东师范大学,2009.
38 Wang M, Tian D, Tian P, et al. Applied Surface Science,2013,283(20),389.
39 Tang M, Lin X H, Li M G, et al. Journal of Wuhan University of Techno-logy (Materials Science Edition),2016,31(4),736.
40 Police A K R, Basavaraju S, Valluri D K, et al. Journal of Materials Science & Technology,2013,29(7),639.
41 Liu C H. B2O3-modified SiO2 microwave dielectric materials. Master’s Thesis, Zhejiang University, China,2015(in Chinese).
刘聪慧.B2O3改性SiO2微波介质材料.硕士学位论文,浙江大学,2015.
42 Panice L B, Oliveira E A D, Filho R A D M, et al. Materials Science & Engineering B,2014,188(10),78.
43 Luo H. Research on hydrophobicity and thermostability of organic-inorga-nic hybrid modified phenolic. Master’s Thesis, Harbin Institute of Technology, China,2015(in Chinese).
罗浩.有机无机杂化改性酚醛疏水及耐热性能研究.硕士学位论文,哈尔滨工业大学,2015.
44 Jin I L, Lee W K. Materials Letters,2017,206(206),193.
45 Mohammed A M. Chinese Journal of Physics,2017,55(2),242.
46 Yang X, Liu X, Tang W, et al. Korean Journal of Chemical Engineering,2017,34(3),723.
47 Dang J, Guo Z, Zheng X, et al. Analytical Chemistry,2014,86(18),8943.
48 Kuzminska M, Kovalchuk T V, Backov R, et al. Journal of Catalysis,2014,320(1),1.
49 Cheng G J, Song R J, Miao J B, et al. Materials Review A: Review Papers,2012,26(6),130(in Chinese).
程国君,宋瑞娟,苗继斌,等.材料导报:综述篇,2012,26(6),130.
50 Guo Y Y. The investigation of the interface between the CNT and the rubber. Master’s Thesis, Beijing University of Chemical Technology, China,2016(in Chinese).
郭燕燕.碳纳米管/橡胶纳米复合材料界面性能研究.硕士学位论文,北京化工大学,2016.
51 Mei Z, Gu M Y. Journal of Materials Science and Engineering,1996(3),1(in Chinese).
梅志,顾明元.材料科学与工程学报,1996(3),1.
52 Ruan W H, Rong M Z, Zhang M Q. Materials Research and Application,2010,4(4),736(in Chinese).
阮文红,容敏智,章明秋.材料研究与应用,2010,4(4),736.
53 Singha S, Jana T. ACS Applied Materials & Interfaces,2014,6(23),21286.
54 Li H, Song L, Fu Y, et al. Composites Science & Technology,2017,138,169.
55 Holt A P, Griffin P J, Bocharova V, et al. Macromolecules,2014,47(5),1837.
56 Zhu J J, Zhai Q G, Li X L, et al. Chemical Research and Application,2014(7),988(in Chinese).
朱建君,翟秋阁,李晓玲,等.化学研究与应用,2014(7),988.
57 Feng J M, Liu X Q, Bao R Y, et al. RSC Advances,2015,5(91),74295.
58 Parpaite T, Otazaghine B, Taguet A, et al. Polymer,2014,55(11),2704.
59 Wei X, Zhao C, Ma J, et al. RSC Advances,2016,6(3),1870.
60 Antonelli C, Serrano B, Baselga J, et al. Materials Letters,2014,137(137),460.
61 Grenoble Z, Baldelli S. Journal of Physical Chemistry B,2013,117(34),9882.
62 Li J, Yang Y Q, Luo X, et al. Rare Metal Materials and Engineering,2013,42(3),644(in Chinese).
李健,杨延清,罗贤,等.稀有金属材料与工程,2013,42(3),644.
63 Yan L M. Theory and practice of molecular dynamics simulation, Science Press, China,2013(in Chinese).
严六明.分子动力学模拟的理论与实践,科学出版社,2013.
64 Jiang Q. The interface modification and molecular dynamics simulation of carbon nanotube and polyimide and fabrication and characterization of carbon nanotube reinforced polyimide composite. Master’s Thesis, Donghua University, China,2013(in Chinese).
姜茜.碳纳米管与聚酰亚胺界面优化、分子动力学模拟及其复合材料的结构性能表征.硕士学位论文,东华大学,2013.
65 Feng T T, Qin Y D. Science and Technology Innovation Herald,2015(23),248.
冯婷婷,秦宜德.科技创新导报,2015(23),248.
66 Dai S, Liu Y, Zhang J, et al. Composite Interfaces,2017,24(9),897.
67 Wei Q, Zhang Y, Wang Y, et al. Journal of Materials Science,2017,52(21),12889.
68 Nicola A D, Avolio R, Monica F D, et al. RSC Advances,2015,5(87),71336.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[5] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[6] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[7] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[8] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[9] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[10] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[11] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[12] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[13] 李萍,左迎峰,吴义强,赵星,王健. 秸秆人造板制造及应用研究进展[J]. 材料导报, 2019, 33(15): 2624-2630.
[14] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[15] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed