Please wait a minute...
材料导报  2019, Vol. 33 Issue (6): 975-979    https://doi.org/10.11896/cldb.201906012
  无机非金属及其复合材料 |
一种新型纳米SiO2降压增注剂的制备与评价
翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖
中国石油大学(华东)石油工程学院,青岛 266580
Preparation and Evaluation of a New Type Step-down Augmented Injection Agent Made of SiO2 Nanoparticles
ZHAI Henglai, QI Ning, SUN Xun, ZHANG Xiangyu, FAN Jiacheng
College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580
下载:  全 文 ( PDF ) ( 1779KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米降压增注技术将憎水亲油类纳米材料作为调剖剂,可有效解决低渗致密油气藏长期注水开发产生的高压欠注等问题。但是,目前此技术所应用的纳米SiO2增注剂原料成本过高、来源较少且制备过程复杂。本工作以疏水纳米SiO2、无水乙醇和表面活性剂为原料,提供了一种新型纳米降压增注剂的制备方法,然后分析了其性能和作用机理。结果表明:制备纳米增注剂时,分散液中乙醇质量固定为10%后,1% Tween 80用量时纳米SiO2用量应少于1%;掺量为0.2%—1%纳米SiO2的增注剂团聚粒径中值在300~400 nm之间,表面张力介于34~37 mN/m之间,界面张力介于1.9~4.0 mN/m;0.6%纳米SiO2增注剂可让碳酸盐岩屑吸附纳米颗粒趋于平衡,且吸附为单层吸附;纳米增注剂处理石英砂片后,亲水表面变为疏水表面;0.2%—0.6%纳米增注剂处理岩样后,入口压力变小,驱替流量变大,渗透率约提高了25%~49%;此纳米增注剂注入地层后,随着温度的升高,乙醇挥发,增注剂中的纳米SiO2会逐渐释放出来,并吸附到岩石表面形成纳米膜,从而起到降压增注的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟恒来
齐宁
孙逊
张翔宇
樊家铖
关键词:  低渗致密油气藏  降压增注  SiO2纳米颗粒  团聚粒径  表界面张力  润湿性  纳米膜    
Abstract: Nanomaterial step-down augmented injection technology takes hydrophobic and lipophilic nanoparticles as a profile control agent, which can effectively solve the problem of high pressure and low injection caused by long-term waterflooding development in low permeability and dense reservoir. However, the conventional nano-SiO2 injection agents used in this technology currently are expensive, difficult to access, and complex in preparation process. This contribution presents the preparation of a new type step-down augmented injection agent made of SiO2 nanoparticles aqueous suspension, using hydrophobic nano-SiO2, ethanol and surfactant as raw materials, and the analysis upon its performance and action principle. The results show that the dosage of nano-SiO2 must be less than 1% when the dosage of 1% Tween 80 is used in the preparation of nano-SiO2 step-down augmented injection agent. The median particle size of 0.2%-0.6% nano-SiO2 injection agent ranges from 300 to 400 nm. The surface tension of 0.2%-1% nano-SiO2 injection agent is within 34-37 mN/m and the interface tension is within 1.9-4.0 mN/m. 0.6% of the prepared nano-SiO2 injection agent can make carbon dioxide debris reach adsorption equilibrium, which accords with the characteristic of single-layer adsorption. After treating by nano-SiO2 step-down augmented injection agent, the hydrophilic surface of the quartz sand tablets transferred to a hydrophobic one. Moreover, 0.2%-0.6% nano-SiO2 step-down augmented injection agent added to the rock samples could achieve smaller inlet pressure, larger displacement flow, and a permeability increment of about 25%-49%. When the nano-SiO2 step-down augmented was injected into the formation, the ethanol would volatilize with the temperature rising, nano-SiO2 particles could be released and be adsorbed onto the rock surfaces of the rock to form nano-film. In consequence, it could exert the role of reducing the pressure and enhancing the flow.
Key words:  low permeability and dense reservoir    step-down augmented injection    SiO2 nanoparticles    agglomerated particle size    surface and interface tension    wettability    nano-film
                    发布日期:  2019-04-03
ZTFLH:  TE358+.3  
  TE39  
基金资助: 十三五国家科技重大专项(2017ZX005030005)
作者简介:  翟恒来,油气田开发工程专业硕士研究生(2015-2017),主要从事采油工程及提高采收率的研究工作。齐宁,中国石油大学(华东),博士,副教授,硕士生导师,主要从事防砂、酸化、调剖堵水等研究,特色方向为纤维复合防砂、自转向酸化、高温高盐调堵、低渗透调堵等。
引用本文:    
翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
ZHAI Henglai, QI Ning, SUN Xun, ZHANG Xiangyu, FAN Jiacheng. Preparation and Evaluation of a New Type Step-down Augmented Injection Agent Made of SiO2 Nanoparticles. Materials Reports, 2019, 33(6): 975-979.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201906012  或          http://www.mater-rep.com/CN/Y2019/V33/I6/975
1 Pang Q Q, Liu P P, Huang D, et al. Energy Conservation in Petroleum & Petrochemical Industry,2011,1(4),10(in Chinese).
庞启强, 刘培培, 黄冬雪, 等. 石油石化节能,2011,1(4),10.
2 Zhang Z H, Yang Z M, Liu X G, et al. Acta Petrolei Sinica,2012,33(3),437(in Chinese).
张仲宏, 杨正明, 刘先贵,等. 石油学报,2012,33(3),437.
3 El-Diasty A I, Aly A M. In: SPE North Africa Technical Conference and Exhibition, Cairo,2015,pp.1.
4 Lv X, Hou J R, Yue X A, et al. Journal of Southwest Petroleum University (Science &Technology Edition),2010,32(4),143(in Chinese).
吕鑫, 侯吉瑞, 岳湘安, 等. 西南石油大学学报(自然科学版),2010,32(4),143.
5 Wang K L, Wang C C, Sun L J, et al. In: The 2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu,2010,pp.1.
6 Hu X B, Li S R, Wu H. Journal of Oil and Gas Technology,2012,34(7),129(in Chinese).
胡雪滨, 李释然, 吴华. 石油天然气学报,2012,34(7),129.
7 Zhang L, Zhang G C, Jiang P, et al. Materials Review:Review Papers, 2015,29(7),72(in Chinese).
张磊, 张贵才, 蒋平, 等. 材料导报:综述篇,2015,29(7),72.
8 Yue Y Z. Study and preparation of the new water-based nanometer polysilicon injection agent. Master’s thesis, Southwest Petroleum University, China,2014(in Chinese).
岳渊洲. 新型水基纳米聚硅增注剂的研制, 硕士论文,西南石油大学, 2014.
9 Li S D, Hendraningrat L, Torsaeter O. In: International Petroleum Technology Conference, Beijing,2013,pp.1.
10 Abbas R. Petrophysics,2014,55(1),31.
11 Jiang C J, Duan Z W, Zhang Z Z, et al. Rare Metal Materials and Engineering,2007,36(4),724(in Chinese).
江成军, 段志伟, 张振忠, 等. 稀有金属材料与工程,2007,36(4),724.
12 Kevin R, Bernard C. Angewandte Chemie-International Edition,2012,51(52),12943.
13 Li S, Torsæter O. In: SPE Middle East Oil & Gas Show and Conference, Manama,2015,pp.1.
14 Yuan B, Moghanloo R G, Zheng D. In: Offshore Technology Conference Asia, Kuala Lumpur, 2016,pp.1.
15 Cheng C Y, Di F Q, Wang C Y, et al. Journal of Hydrodynamics,2015,27(2),187.
16 Wang X L, Di Q F, Zhang R L, et al. Acta Physica Sinica,2012,61(14),336(in Chinese).
王新亮, 狄勤丰, 张任良, 等. 物理学报,2012,61(14),336.
17 Habibi A, Ahmadi M, Pourafshari P, et al. In: SPE European Formation Damage Conference, Noordwijk,2011,pp.1.
[1] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[2] 刘兆文, 李毅波, 黄明辉, 汪必升, 李剑. 阳极氧化处理增强Al-Li合金胶接板剪切强度的机理[J]. 材料导报, 2018, 32(18): 3181-3184.
[3] 毕玉保, 王慧芳, 赵万国, 梁峰, 张海军. 含碳浇注料用鳞片石墨的表面改性技术综述*[J]. 《材料导报》期刊社, 2017, 31(15): 108-114.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed