Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1853-1859    https://doi.org/10.11896/cldb.18060070
  无机非金属及其复合材料 |
通过热处理调控光催化剂性质的研究进展
樊启哲, 廖春发, 陈鑫, 张志文, 余长林
江西理工大学冶金与化学工程学院,赣州 341000
Adjusting the Properties of Photocatalysts Through Heat-treatment: a Review
FAN Qizhe, LIAO Chunfa, CHEN Xin, ZHANG Zhiwen, YU Changlin
School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
下载:  全 文 ( PDF ) ( 1544KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热处理是纳米材料制备过程中重要且常用的调控手段。例如,碳纳米管的拉伸强度和导电性可以通过高温热处理得到增强,金属硫族化合物半导体的光吸收带边和比表面积的调控也可以通过热处理实现。光催化剂的形貌、光吸收带边、粒径大小、活性位点和热稳定性是影响光催化性能的重要因素,而这些因素均可通过热处理进行调控,因此热处理成为光催化剂制备过程中不可缺少的过程。然而,由于热处理过程操控简单,研究人员最初仅将其用于细化晶粒,提高光催化剂的结晶度,并未过多地关注其调控功能。但过高的热处理温度会导致光催化剂的烧结长大,而过低的温度则不能达到细化晶粒的效果。因此,寻找合适的热处理温度成为热处理调控最初的研究重点。但近年来的研究发现,对光催化剂进行热处理,除了可以使其晶粒细化、颗粒均匀分布、掺杂元素均匀扩散,还可以调控光催化剂的形貌、相变行为、氧空位和催化活性位点的数量,从而促进其光催化性能的提升。因此,研究重点逐渐向热处理气氛以及对元素掺杂的相转变抑制调控机理扩展。目前,热处理温度的调控研究主要集中在不同锻烧温度对光催化剂孔结构、膜结构、核壳结构等形貌的调控,以及对光催化剂异质结相变形成的影响;锻烧气氛的调控研究主要集中在惰性气氛和氧化还原气氛对光催化剂氧空位和活性位点的调控;掺杂元素的热处理调控研究则集中在掺杂元素对热处理过程中相变抑制以及热处理对元素掺杂扩散的调控。尽管热处理对光催化剂的调控研究已取得了丰硕的成果,但热处理在光催化剂性能调控方面的研究仍未得到充分重视。因此,本文阐述了热处理温度对催化剂形貌、相变行为的影响,分析了氧化气氛、还原气氛和惰性气氛对催化剂氧空位和催化活性位点的影响,以及热处理的元素掺杂调控对催化剂热稳定性和光催化活性的影响,以期为热处理调控光催化剂的深入研究提供参考。分析认为,热处理是光催化剂性能调控的重要手段,精确的短流程低温调控手段、多元的调控因素和受热自转变异质结促进机理等方面的研究应成为热处理调控的重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊启哲
廖春发
陈鑫
张志文
余长林
关键词:  热处理  光催化  异质结  调控  相变  光化学  稳定性    
Abstract: Heat treatment is an extremely vital and commonly used control method in the process of preparing nanomaterials. For example, the tensile strength and electroconductivity of carbon nanotubes can be enhanced by high-temperature heat treatment. In addition, the adjustment of the optical absorption band edge and specific area of the metal sulfide can be achieved by heat treatment as well. The morphology, optical absorption band edge, particle size, active sites and thermal stability of the photocatalysts are all crucial factors affecting the photoactivity, which can be regulated via heat treatment. Therefore, heat treatment becomes fatal in the process of preparing photocatalysts. However, due to the simple operation of the heat treatment process, the researchers initially utilized it only to refine the grains and increase the crystallinity of the photocatalyst, but pay less attention on its regulation function. Yet, an excessively high heat treatment temperature causes the sintering and growth of photocatalysts, while an excessively low temperature has no effect on refining the crystal grains. Hence, searching a appropriate temperature becomes the initial research focus for heat treatment regulation. Recent research indicated that the heat treatment of photocatalysts can not only refine their grain, make their particle uniform distribution and doping elements uniform diffusion, but also regulate their morphology, phase transformation behavior, oxygen vacancy and the number of active sites, thereby promoting the photocatalytic performance of photocatalysts. Therefore, the research focus is gradually expanded to heat treatment atmosphere and the phase transformation inhibition mechanism for element doping. At present, the research on the control of heat treatment temperature mainly concentrated on regulating pore structure, membrane structure and core-shell structure, as well as the influence of heterojunction phase transition of photocatalyst on different calcination temperatures. The research of sintering atmosphere mainly concentrated on the regulation of photocatalyst vacancy oxygen and active sites under inert atmosphere and redox atmosphere. For the heat treatment regulation of doping elements, it mainly focuses on the phase transformation inhibition of doping elements in the heat treatment process and the regulation of element diffusion. Though the research on the regulation of photocatalyst by heat treatment has achieved fruitful results, yet the research on the regulation of photoactivity has not been fully paid attention to. Consequently, this article expounds catalysts’ morphology, phase transition behavior under the influence of the temperature, and analyzes the effect of catalysts’ oxygen vacancies and active sites under the inert atmosphere, oxidation and reducing atmosphere, as well as the impact of the element’s doping and regulation by heat treatment on catalysts’ thermal stability and photoactivity, which is expected to provide a reference for in-depth study. The analyses deem that heat treatment is an important way to regulate and control the photoactivity. Accurate short-flow low-temperature control methods, multiple regulation factors and the promoting mechanism of heating self-transformation heterojunction should become the hot spot.
Key words:  heat treatment    photo-catalytic    hetero-junction    regulating    phase change    photochemistry    stability
                    发布日期:  2019-05-21
ZTFLH:  O643.3  
  TB34  
基金资助: 江西省教育厅科学技术研究项目(GJJ150630);江西省研究生创新专项资金(YC2016-B076);赣州市工业技术创新项目(2015);江西理工大学优秀博士学位论文培育计划(YB2016006);江西理工大学科研基金(NSFJ2015-G08);江西理工大学大学生创新训练项目(DC2017-014)
通讯作者:  yuchanglinjx@163.com   
引用本文:    
樊启哲, 廖春发, 陈鑫, 张志文, 余长林. 通过热处理调控光催化剂性质的研究进展[J]. 材料导报, 2019, 33(11): 1853-1859.
FAN Qizhe, LIAO Chunfa, CHEN Xin, ZHANG Zhiwen, YU Changlin. Adjusting the Properties of Photocatalysts Through Heat-treatment: a Review. Materials Reports, 2019, 33(11): 1853-1859.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18060070  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1853
1 Yang K,Zhong D J,Xu Y L, et al. Journal of Chongqing University of Technology (Natural Science),2017,31(10),134(in Chinese).
杨开,钟登杰,徐云兰,等.重庆理工大学学报(自然科学),2017,31(10),134.
2 Amarjargal A, Tijing L D, Yu M H, et al. Journal of Materials Science and Technology,2012,28(2),184.
3 Wu M M, Li M Y, Liu J H, et al. Journal of Functional Materials,2017,48(10),10001(in Chinese ).
吴苗苗,李洺阳,刘佳昊,等.功能材料,2017,48(10),10001.
4 Wu M H, Zhang M, Lv T, et al. Applied Catalysis A: General,2017,547,96.
5 Pan L, Zou J J, Wang S, et al. Applied Surface Science,2013,268,252.
6 Wu Y T, Gong Y Y, Liu J Q, et al. Journal of Alloys and Compounds,2017,695,1462.
7 Ismail A A, Al-Sayari S A, Bahnemann D W. Catalysis Today,2013,209,2.
8 Bai C L. Science,2005,309(5731),61.
9 Palacci J, Sacanna S, Abramian A, et al. Science Advances,2015,1(4),e1400214.
10 Mohanan J L, Arachchige I U, Brock S L. Science,2005,307(5708),397.
11 Tanaka Y, Suganuma M. Journal of Sol-Gel Science and Technology,2001,22(1-2),83.
12 Jiang R, Zhu H Y, Chen H H, et al. Applied Surface Science,2014,319(1),189.
13 Tian C X, Yang Y, Pu H. Applied Surface Science,2011,257(20),8391.
14 Bakardjieva S, Šubrt J, Štengl V, et al. Applied Catalysis B: Environmental,2005,58(3-4),193.
15 Abidov A, Allabergenov B, Lee J, et al. Journal of Crystal Growth,2014,401,584.
16 Sönmezolu S, Cankaya G, Serin N, et al. Applied Physics A,2012,107(1),233.
17 Yu J G, Dai G P, Cheng B. Journal of Physical Chemistry C,2010,114(45),19378.
18 Fang D, Luo Z P, Huang K L. Applied Surface Science,2011,257(15),6451.
19 Yu J G, Wang B. Applied Catalysis B: Environmental,2010,94(3-4),295.
20 Nor N A M, Jaafar J, Ismail A F, et al. Journal of Water Process Engineering,2017,20(11),193.
21 Ji Y. Materials Letters,2013,108,208.
22 Omori T, Kusama T, Kawata S, et al. Science,2013,341(6153),1500.
23 Zhang H Z, Banfield J F. The Journal of Physical Chemistry B,2000,104(15),3481.
24 Matsuba K, Wang C X, Saruwatari K, et al. Science Advances,2017,3(6),e1700414.
25 Kumar S, Bhunia S, Ojha A K. Physica E,2015,66,74.
26 Fang W, He H B, Xue S S, et al. Journal of the Chinese Ceramic Society,2016,44(5),711(in Chinese).
方稳,何洪波,薛霜霜,等.硅酸盐学报,2016,44(5),711.
27 Kadam A N, Bhopate D P, Kondalkar V V, et al. Journal of Industrial and Engineering Chemistry,DOI:10.1016/j.jiec.2017.12.003.
28 Reddy C V, Shim J, Cho M. Journal of Physics and Chemistry of Solids,2017,103,209.
29 Pawar R C, Son Y, Kim J, et al. Current Applied Physics,2016,16(1),101.
30 Cybula A, Priebe J B, Pohl M M, et al. Applied Catalysis B: Environmental,2014,152-153(1),202.
31 Nakaoka Y, Nosaka Y. Journal of Photochemistry and Photobiology A: Chemistry,1997,110(3),299.
32 Górska P, Zaleska A, Kowalska E, et al. Applied Catalysis B: Environmental,2008,84(3-4),440.
33 Ovenstone J, Yanagisawa K. Chemistry of Materials,1999,11(10),2770.
34 Schulte K L, Desario P A, Gray K A. Applied Catalysis B: Environmental,2010,97(3-4),354.
35 Kim C S, Kwon I M, Moon B K, et al. Materials Science and Engineering C,2007,27(5-8),1343.
36 Fan Y Z, Deng M H, Chen G P, et al. Journal of Alloys and Compounds,2011,509(5),1477.
37 Bae C, Ho T A, Kim H, et al. Science Advances,2017,3,1602215.
38 Yu C L, Zhou W Q, Yu J C, et al. Chinese Journal of Chemistry,2012,30(3),721.
39 Yu C L, Fan C F, Yu J C, et al. Materials Research Bulletin,2011,46(1),140.
40 Fan Q Z, Yu C L, Zhou W Q, et al. Transactions of Materials & Heat Treatment,2015,36(5),10(in Chinese).
樊启哲,余长林,周晚琴,等.材料热处理学报,2015,36(5),10.
41 Yu C L, Li G, Kumar S, et al. Advanced Materials,2014,26(6),892.
42 Klaysri R, Wichaidit S, Tubchareon T, et al. Ceramics International,2015,41(9),11409.
43 Slimen H, Lachheb H, Qourzal S, et al. Journal of Environmental Chemical Engineering,2015,3(2),922.
44 Zhou S Y, Zhong Z X, Fan Y Q, et al. Chinese Journal of Chemical Engineering,2009,17(5),739.
45 Yang Y H, Qiu G Z, Chen Q Y, et al. Transactions of Nonferrous Metals Society of China,2007,17(4),836.
46 Yang Y, Jiang Y S, Wang Y W, et al. Materials Chemistry and Physics,2007,105(2-3),154.
47 Ismail A A, Geioushy R A, Bouzid H, et al. Applied Catalysis B: Environmental,2013,129,62.
48 Xia Y, Jiang Y S, Li F F, et al. Applied Surface Science,2014,289,306.
49 Setviń M, Aschauer U, Scheiber P, et al. Science,2013,341(6149),988.
50 Kamisaka H, Adachi T, Yamashita K. The Journal of Chemical Physics,2005,123(8),84704.
51 Wu N L, Lee M S, Pon Z J, et al. Journal of Photochemistry and Photobiology A: Chemistry,2004,163(1-2),277.
52 Zhao J S, Liu H, Zhang Q. Applied Surface Science,2017,392,1097.
53 Suriye K, Praserthdam P, Jongsomjit B. Applied Surface Science,2007,253(8),3849.
54 Chand R, Obuchi E, Katoh K, et al. Catalysis Communications,2011,13(1),49.
55 Sreemany M, Sen S. Materials Research Bulletin,2007,42(1),177.
56 Huang F, Zhang S, Wang S, et al. Materials Review B: Research Papers,2015,29(11),6(in Chinese).
黄凤萍,张双,王帅,等.材料导报:研究篇,2015,29(11),6.
57 Zhu X, Feng W, Pei L, et al. Hot Working Technology,2017,46(18),202(in Chinese).
朱晓东,冯威,裴玲秀,等.热加工工艺,2017,46(18),202.
58 Zhang S M, Marsh R, Ratner N, et al. Journal of the Chinese Rare Earth Society,2004(6),746(in Chinese).
井立强,张新,屈宜春,等.中国稀土学报,2004(6),746.
59 Zhou F, Liang K M, Wang G L, et al. Rare Metal Materials & Enginee-ring,2004,33(S3),265(in Chinese).
周锋,梁开明,王国梁,等.稀有金属材料与工程,2004,33(S3),265.
60 Strini A, Sanson A, Mercadelli E, et al. Applied Surface Science,2015,347,883.
61 Dawson M, Soares G B, Ribeiro C. Journal of Solid State Chemistry,2014,215,211.
62 Zhang Y H, Xu Y X, Wang Y G. Chinese Journal of Inorganic Chemistry,2003(10),1099(in Chinese).
张玉红,徐永熙,王彦广.无机化学学报,2003(10),1099.
63 Tang H L, Su Y, Zhang B S, et al. Science Advances,2017,3(10),e1700231.
64 Cargnello M, Delgado Jaén J J, Hernández Garrido J C, et al. Science,2012,337(6095),713.
65 Bashiri R, Mohamed N M, Fai Kait C, et al. International Journal of Hydrogen Energy,2017,42(15),9553.
66 Zhang M, Jin Z H, Zhang J W, et al. Journal of Molecular Catalysis A: Chemical,2005,225(1),59.
67 Meksi M, Berhault G, Guillard C, et al. Catalysis Communications,2015,61,107.
68 Lin J, Yu J C. Journal of Photochemistry and Photobiology A: Chemistry,1998,116(1),63.
69 Zhang Y H, Reller A. Materials Science and Engineering C,2002,19(1-2),323.
70 Zhang Y H, Reller A. Journal of Materials Chemistry,2001,11(10),2537.
71 Zhang Y H, Weidenkaff A, Reller A. Materials Letters,2002,54(5-6),375.
72 Zheng G T, Shi J W, Chen M X, et al. Journal of Chemical Industry and Engineering,2006,57(3),564 (in Chinese).
郑广涛,施建伟,陈铭夏,等.化工学报,2006,57(3),564.
73 Zhou W Y, Cao Q Y, Tang S Q, et al. Chinese Journal of Nonferrous Metals,2006,16(7),1233(in Chinese).
周武艺,曹庆云,唐绍裘,等.中国有色金属学报,2006,16(7),1233.
74 Guan S J, Hao L, Yoshida H, et al. Materials Letters,2016,167,43.
75 Pap Z, Danciu V, Cegléd Z, et al. Applied Catalysis B: Environmental,2011,101(3-4),461.
76 He L L, Tong Z F, Wang Z H, et al. Journal of Colloid and Interface Science,2018,509,448.
77 Sun J, Wen W, Wu J M. Journal of the American Ceramic Society,2013,96(7),2109.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 张笑, 宋武林, 卢照, 曾大文, 谢长生. 纳米二氧化钛分散液稳定性的研究进展[J]. 材料导报, 2019, 33(z1): 16-21.
[3] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[4] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[5] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[6] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[7] 王宏, 李方, 张十庆, 何钦生, 张登友, 邹兴政, 赵安中, 谭军. 核场测温用热电偶合金材料的研究[J]. 材料导报, 2019, 33(z1): 398-402.
[8] 郭建业, 赵英民, 张丽娟, 苏力军, 李文静, 杨洁颖. 高温可重复使用二氧化硅气凝胶复合材料性能研究[J]. 材料导报, 2019, 33(z1): 202-205.
[9] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[10] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[11] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[12] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[13] 陈丽萍, 蔡亮, 李光华, 周强. 基于CiteSpace的储热技术研究进展与趋势[J]. 材料导报, 2019, 33(9): 1505-1511.
[14] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[15] 陈琛辉, 蒋璐瑶, 刘成龙, 黄伟九, 郭勇义, 胥桥梁. 搅拌摩擦加工细晶TA2工业纯钛晶粒长大规律[J]. 材料导报, 2019, 33(8): 1367-1370.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed