Please wait a minute...
材料导报  2019, Vol. 33 Issue (11): 1860-1868    https://doi.org/10.11896/cldb.18090180
  无机非金属及其复合材料 |
矿物基摩擦材料的研究进展
赵晓光1,2, 欧阳静1,2,3, 张毅1,2,3, 杨华明1,2,3
1 中南大学资源生物学院,长沙 410083
2 中南大学矿物材料及其应用湖南省重点实验室,长沙 410083
3 中南大学建筑材料行业黏土矿物功能材料重点实验室,长沙 410083
Research Progress in Mineral-based Friction Materials
ZHAO Xiaoguang1,2, OUYANG Jing1,2,3, ZHANG Yi1,2,3, YANG Huaming1,2,3
1 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083
2 Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083
3 Key Laboratory of Clay Mineral Functional Materials in China Building Materials Industry, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 3582KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 摩擦材料是一种采用有机体/无机物压制而成的复合材料,广泛应用于运动车辆与工程机械中,发挥制动和传动功能,是工作中的核心部件。摩擦材料在汽车工业中应用最广,其性能优劣对汽车的安全性、稳定性具有十分重要的影响。矿物材料具有无毒、耐热性及化学稳定性好、无污染等优异的物理化学性质,且部分材料具有天然的纤维状、层状等特殊形貌结构,对摩擦材料的性能具有显著影响,是当前摩擦科学和工程领域关注的重点对象。然而,矿物材料的种类众多,成分和结构大相径庭,物化性能各有差异,导致矿物材料在摩擦材料中发挥作用的方式和机理也不尽相同。基于此,本文从矿物增强摩擦材料、矿物基摩擦材料的性能调控两方面,对矿物材料的成分、结构和物理化学性质及其对摩擦材料制品性能和使用效能的影响进行了综述。进一步从纤维状矿物增强调控、颗粒状矿物增摩调控和层状矿物减摩调控三个方面重点阐述了矿物调控摩擦材料的机理。开发新型矿物材料,加快表面改性及有效除杂等新技术的研发,加强矿物材料在摩擦材料中的作用机理研究,可以作为未来矿物基摩擦材料进行工业应用和理论研究的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晓光
欧阳静
张毅
杨华明
关键词:  矿物  摩擦材料  物化特性  性能调控    
Abstract: Friction materials are considered to be composites consisting of organic and inorganic materials. As a main working part, they play an important role in braking and transmitting in the fields of transportation and industrial equipment. Friction materials are the most widely used in automobile industry, and their performance has a very important impact on the safety and stability of automobiles. Mineral materials have excellent physical and chemical properties such as non-toxic, heat-resistant, chemical stability, no pollution, and some of them have special morphology (fibrous and layered structure), which are currently of concern in the field of friction science and engineering. However, the function of mineral materials used in friction materials is different, because of the variety of mineral materials and difference of their composition and structure. Based on this, the composition, structure, physical and chemical properties of mineral materials and their effects on the properties and service efficiency of friction products are reviewed in this paper. Furthermore, the mechanism of regulating friction materials by minerals is discussed from three aspects: the reinforcement of friction materials by fibrous minerals, friction-increased regulation by granular minerals and friction-reduction regulation by layered minerals. Developing novel mineral materials, accelerating the development of new technologies such as surface modification and effective impurity removal, and strengthening the study on the influence mechanism of mineral materials in friction materials can be deemed to the development directions of future industrial application and theoretical research of mineral-based friction materials.
Key words:  mineral    friction material    physicochemical characteristic    property control
                    发布日期:  2019-05-21
ZTFLH:  TB332  
基金资助: 国家重点研发计划资助项目(2017YFB0310903)
通讯作者:  jingouyang@csu.edu.cn   
作者简介:  赵晓光,2018年6月毕业于长安大学,获得工学学士学位。现为中南大学资源加工与生物工程学院博士研究生,在杨华明教授的指导下进行研究。目前主要研究领域为矿物功能材料。欧阳静,中南大学资源加工与生物工程学院副教授、博士研究生导师。 2002年7月本科毕业于成都理工大学材料系,2010年7月在中南大学资源加工与生物工程学院材料学专业取得博士学位。 2017—2018年在美国康涅狄格大学访学一年。主要从事矿物材料、功能材料的制备与性能研究工作,在Sci.Adv.Mater.发表封面论文1篇,在Adv. Funct. Mater.Sci. Rep.Chem. Engineer. J.Mater. Des.J. Phys. Chem. CJ. Phys. Chem. BJ. Am. Ceram. Soc.等发表SCI、EI论文50余篇,被SCI引用600余次,单篇最高被他引130次。授权发明专利13项,合作出版专著2部,参编国家级教材1部,组织、参与编写领域内中、英文专著多章。
引用本文:    
赵晓光, 欧阳静, 张毅, 杨华明. 矿物基摩擦材料的研究进展[J]. 材料导报, 2019, 33(11): 1860-1868.
ZHAO Xiaoguang, OUYANG Jing, ZHANG Yi, YANG Huaming. Research Progress in Mineral-based Friction Materials. Materials Reports, 2019, 33(11): 1860-1868.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090180  或          http://www.mater-rep.com/CN/Y2019/V33/I11/1860
1 高惠民.矿物复合摩擦材料,化学工业出版社,2007.
2 Thiyagarajan V, Kalaichelvan K, Vijay R, et al. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2016,38(4),1207.
3 Pupan D, Suvanjumrat C, Chookaew W. In: Materials Science Forum. Switzerland,2017,pp.19.
4 Akgincolu G, Öktem H, Uygur I, et al. Arabian Journal for Science and Engineering,2018,43,4727.
5 Ma Y, Wu S, Tong J, et al. Materials Research Express,DOI:10.1088/2053-1591-aab4a7.
6 Ikpambese K K, Gundu D T, Tuleun L T. Journal of King Saud University-Engineering Sciences,2016,28,110.
7 Xiao X, Yin Y, Bao J, et al. Advances in Mechanical Engineering,2016,8(5),1.
8 Sugozu I, Mutlu I, Sugozu K B. Polymer Composites,DOI:10.1002-pc.23901.
9 Ghosh P, Ghosh D, Khastgir D, et al. Tribology Transactions,2017,60(3),548.
10 Orlowicz A W, Mróz M, Wnuk G, et al. Archives of Foundry Enginee-ring,2016,16(4),196.
11 Ji Z, Jin H, Luo W, et al. Tribology International,2017,107,213.
12 Singh T, Patnaik A, Chauhan R, et al. Polymer Composites,2017,29,183.
13 Balaji S, Kalaichelvan K. Procedia Engineering,2012,38,1650.
14 Zhang H L, Jiao H B. China Non-Metallic Minerals Industry,2015(4),4(in Chinese).
张红林,焦红斌.中国非金属矿工业导刊,2015(4),4.
15 Wang Y T, Wang D, Cao M, et al. China Non-Metallic Minerals Industry,2017(3),12(in Chinese).
汪溢汀,王东,曹敏,等.中国非金属矿工业导刊,2017(3),12.
16 Meng Z X, Cao M, Wang D, et al. China Non-Metallic Minerals Industry,2017(1),5(in Chinese).
孟增祥,曹敏,王东,等.中国非金属矿工业导刊,2017(1),5.
17 Yu S B, Cao M, Wang D, et al. China Non-Metallic Minerals Industry,2017(2),5(in Chinese).
余思彬,曹敏,王东,等.中国非金属矿工业导刊,2017(2),5.
18 Singh T, Tiwari A, Patnaik A, et al. Wear,2017,386,157.
19 Tong J, Ma Y, Jiang M. Wear,2003,255(1-6),734.
20 Fernandez-Barranco C, Koziol A E, Drewniak M, et al. Applied Clay Science,2018,153,154.
21 Hou K, Ouyang J, Zheng C H, et al. Materials Express,2017,7(2),104.
22 Cao X, Liang L, Wen D, et al. Journal of Wuhan University of Technology (Materials Science Edition),2000,15(1),54.
23 Singh T, Patnaik A, Satapathy B K, et al. Journal of Materials Enginee-ring and Performance, DOI: 10.1007/s11665-012-0325-x.
24 Liu K P, Zhou J E. China Concrete and Cement Products,2003(3),32(in Chinese).
刘开平,周敬恩.混凝土与水泥制品,2003(3),32.
25 Guan B W, Liu K P, Zhao X F, et al. Express Information of Mining Industry,2008(6),32.
关博文,刘开平,赵秀峰,等.矿业快报,2008(6),32.
26 Li P. Experimental research on the mechanical properties and durabilities of the fiber brucite pavement concrete mixed with flyash. Master’s Thesis, Chongqing Jiaotong University, China,2016(in Chinese).
李珮.掺粉煤灰水镁石纤维路面混凝土力学性能及耐久性能试验研究.硕士学位论文,重庆交通大学,2016.
27 Zhang X, Li K, Li H, et al. Journal of Engineering Tribology,2013,227(11),1241.
28 Menapace C, Leonardi M, Matějka V, et al. Wear,2018,398-399,191.
29 Lu Z Y, Guan Q M, He L, et al. Multipurpose Utilization of Mineral Resources,2007(6),33(in Chinese).
鲁知音,管琪明,何林,等.矿产综合利用,2007(6),33.
30 Cho K H, Jang H, Hong Y S, et al. Wear,2008,264(3),291.
31 Shin M W, Kim Y H, Jang H. Tribology Letters,2014,55(3),371.
32 Ma Y, Martynková G S, Valášková M, et al. Tribology International,2008,41(3),166.
33 Cho M H, Ju J, Kim S J, et al. Wear,2006,260(7-8),855.
34 Munz M, Sturm H, Schulz E, et al. Composites Part A Applied Science & Manufacturing,1998,29(9-10),1251.
35 Zhong L, Chen M Q. Synthesis and Aging Application,2017,46(6),84(in Chinese).
钟厉,陈梦青.合成材料老化与应用,2017,46(6),84.
36 Liu Y. Fundamental research on vehicle friction material fabricated by fibrous polygorskite from Dafang. Master’s Thesis, Guizhou University, China,2007(in Chinese).
刘勇.贵州大方纤维状坡缕石对汽车摩擦材料性能影响的基础研究.硕士学位论文,贵州大学,2007.
37 马洪文.工业矿物与岩石,地质出版社,2002.
38 Azarov G M, Maiorova E V, Oborina M A, et al. Glass and Ceramics,1995,52(9-10),237.
39 Li Z Z, Li S X, Zhang A L, et al. Plastic Science and Technology,2009,37(4),83(in Chinese).
李征征,李三喜,张爱玲,等.塑料科技,2009,37(4),83.
40 Gupta B, Modi A J. International Journal of Advance Engineering and Research Development,2015,2(2),218.
41 Xu X, Lu X, Yang D, et al. In: Materials Science and Engineering Conference Series. Dalian,2015.
42 Cong P H, Wu X Y, Pu J, et al. Tribology,2011,31(1),88(in Chinese).
丛培红,吴行阳,卜娟,等.摩擦学学报,2011,31(1),88.
43 Russell R, Valencia C, Emrich H W. Journal of the American Ceramic Society,1956,39(2),10.
44 Kim S J, Cho M H, Basch R H, et al. Tribology Letters,2004,17(3),655.
45 Wu J J. Journal of Ecology & Rural Environment,2007,23(3),82.
46 Erdem E, Cölgelcen G, Donat R. Journal of Colloid & Interface Science,2005,282(2),314.
47 Kolluri D K, Boidin X, Desplanques Y, et al. Wear,2010,268(11),1472.
48 Chollet M, Daniel I, Koga K T, et al. Earth & Planetary Science Letters,2009,284(1),57.
49 Rudenko P, Bandyopadhyay A. Applied Surface Science,2013,276(7),383.
50 Zhang X, Li K Z, Li H J, ea al. Lubrication Engineering,2013,38(7),16(in Chinese).
张翔,李克智,李贺军,等.润滑与密封,2013,38(7),16.
51 Dong C, Yuan C, Wang L, et al. Scientific Reports,DOI:10.1038-srep35023.
52 Xiong D, Peng C. Transactions of Nonferrous Metals Society of China,2000,10(3),328.
53 Sahoo R R, Biswas S K. Tribology Letters,2010,37(2),313.
54 Bhushan B, Ko P L. Introduction to tribology, Ohio state University Press, New York,2002.
55 Bai Z, Yang N, Guo M, et al. Tribology International,2016,101,115.
56 Wang Z Y. Study on the preparation of Co-Al hydrotalcite-like compounds and tribological properties. Master’s Thesis, China University of Geoscie-nces, China,2011(in Chinese).
王振宇.Co-Al水滑石类化合物的制备与摩擦性能研究.硕士学位论文,中国地质大学,2011.
57 Zhang T G. Preparation, intercalation and study on tribological properties of Ce-Mg-Al layered double hydroxides. Master’s Thesis, China University of Geosciences, China,2011(in Chinese).
张天广.Ce-Mg-Al类水滑石的合成与插层工艺及摩擦性能研究.硕士学位论文,中国地质大学,2011.
58 Fu F. Study on preparation and tribological properties of Cu/Ni-Mg-Al hydrotalcite-like compounds. Master’s Thesis, China University of Geosciences, China,2011(in Chinese).
付帆.Cu/Ni-Mg-Al类水滑石的制备与摩擦性能研究.硕士学位论文,中国地质大学,2011.
59 Bai Z, Wang Z, Zhang T, et al. Applied Clay Science,2012,59-60(5),36.
60 Bai Z, Wang Z, Zhang T, et al. Applied Clay Science,2013,76(5),22.
61 Li S, Bai Z, Zhao D. Applied Surface Science,2013,284(11),7.
62 Wang X, Bai Z, Zhao D, et al. Applied Surface Science,2013,277(4),134.
63 Mortazavian S, Fatemi A. Composites Part B: Engineering,2015,72,116.
64 Kim S S, Hwang H J, Shin M W, et al. Wear,2011,271(7),1194.
[1] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[2] 王亚丽, 姚羽涵, 崔素萍, 王卉, 王为. 高炉矿渣的组成和结构对其在碱性环境中早期水化特性的影响[J]. 材料导报, 2018, 32(22): 3989-3994.
[3] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[4] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[5] 龚乾江,徐 祥,杨 明,张世伟,肖 瑞. CPR/NR和高性能填料对复合摩擦材料力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1628-1634.
[6] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅰ:原材料和配合比设计方法[J]. 《材料导报》期刊社, 2018, 32(1): 159-166.
[7] 王兰, 侯晨曦, 樊龙, 谢忆, 卢喜瑞. 矿物固化含Sr、Cs放射性废物研究进展*[J]. 《材料导报》期刊社, 2017, 31(3): 106-111.
[8] 王晴, 李天如, 张强, 丁兆洋. 基于灰色关联与二分法的无机矿物聚合物强度特性研究*[J]. 《材料导报》期刊社, 2017, 31(23): 182-186.
[9] 徐亦冬, 曾鞠庆, 陈伟, 毛江鸿, 沈建生, 胡丹烨. 氧化石墨烯增强水泥基复合材料的研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(23): 150-155.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed