Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1711-1715    https://doi.org/10.11896/j.issn.1005-023X.2018.10.027
  材料研究 |
矿物掺合料对地聚合物抗冻性能的影响
李 三1,2,彭小芹1,苟 菁1,周 淦1,黄 婷1,陈 洋1,王淑萍1
1 重庆大学材料科学与工程学院,重庆 400045;
2 重庆六方建设工程质量检测有限公司,重庆 401346
Effect of Mineral Admixtures Incorporation on Frost Resistance of Geopolymer
LI San1,2, PENG Xiaoqin1, GOU Jing1, ZHOU Gan1, HUANG Ting1, CHEN Yang1,WANG Shuping1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400045;
2 Chongqing Liufang Construction Engineering Quality Detection Limited Company, Chongqing 401346
下载:  全 文 ( PDF ) ( 3135KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以碱激发偏高岭土制备地聚合物混凝土,分别研究了掺入15%的钢渣、矿渣或粉煤灰的地聚合物混凝土的力学抗压强度和抗冻性能,测试了地聚合物混凝土的真空饱水体积吸液率,运用XRD、SEM和DSC-TG等测试方法分析了矿物掺合料对地聚合物微观结构和水化产物的影响。结果表明:钢渣或矿渣能有效提高地聚合物混凝土的抗压强度,而粉煤灰的掺入使其强度稍有降低;地聚合物表观形貌中存在较多的孔洞和微裂缝导致其抗冻性能较差,掺入钢渣或者矿渣后地聚合物形成了新的产物C-S-H凝胶、C-A-S-H凝胶等并填充在结构中形成更加密实的板状结构,降低了地聚合物混凝土冻融破坏速率,五次冻融循环后地聚合物的相对强度均在90%以上,抗冻性能得到提高;粉煤灰降低了制备地聚合物混凝土的用水量且未水化的粉煤灰颗粒镶嵌在结构中增加了其密实性和抗冻性能,五次冻融循环后相对强度为86.9%,基准组的相对强度仅为79.7%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李 三
彭小芹
苟 菁
周 淦
黄 婷
陈 洋
王淑萍
关键词:  抗冻性能  地聚合物  矿物掺合料  微观结构    
Abstract: Geopolymer concrete was prepared with metakaolin and alkali-activator. The compressive strength and frost resis-tance of geopolymer concrete with a dosage of steel slag, slag or fly ash of 15% was studied and the vacuum volume aspiration ratio of geopolymer concrete was tested. XRD, SEM and DSC-TG analyses were used to investigate the effect of mineral admixtures incorporation on the microstructures and hydration products of geopolymer. The results showed that the compressive strength of geopolymer concrete is effectively improved by steel slag or slag, but the fly ash could make it slightly decrease. The poor resistance of frost can be attributed to the pores and microcracks exist on the surface of geopolymer. The adding of steel slag or slag forms the hydration products such as C-S-H, C-A-S-H gel which fill in the pores can delay its rate of destruction induced by the cycle of freezing and thawing and improve the frost resistance of geopolymer, it maintains relative strength in 90% after 5 freeze-thaw cycles. The fly ash reduces the water consumption to prepare concrete and the unhydrated fly ash particles embedded in the structure contributes to the improvement of density and frost resistance, as the geopolymer concrete maintained 86.9% strength after 5 freeze-thaw cycle, and 79.7% for the control group.
Key words:  frost resistance    geopolymer    mineral admixture    microstructure
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TU52  
基金资助: 国家自然科学基金(51678093);重庆大学大学生科研训练计划项目(CQU-SRTP-2015219)
通讯作者:  彭小芹:通信作者,女,1956年生,博士,教授,主要研究方向为建筑材料 E-mail:pxq01@cqu.edu.cn   
作者简介:  李三:男,1991年生,硕士,主要研究方向为建筑材料 E-mail:ls0501@cqu.edu.cn
引用本文:    
李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
LI San, PENG Xiaoqin, GOU Jing, ZHOU Gan, HUANG Ting, CHEN Yang,WANG Shuping. Effect of Mineral Admixtures Incorporation on Frost Resistance of Geopolymer. Materials Reports, 2018, 32(10): 1711-1715.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.027  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1711
1 Davidovits J. Early high-strength mineral polymer: US,4509985[P].1985-04-09.
2 Davidovits J.Genpolymers: Inorganic polymeric new materials [J]. Journal of Thermal Analysis,1991,37:1633.
3 Li Z, Zhu D, Zhang Y S. Development of sustainable cementitious materials[C]∥International Workshop on Sustainable Development and Concrete Technology. Beijing,2004.
4 Duxson P, Provis J L, Lukey G C, et al. The role of inorganic polymer technology in the development of ‘green concrete’[J]. Cement and Concrete Research,2007,37:1590.
5 Dai Xinxiang, Wen Ziyun. Study state of geopolymeric cement and its application[J].Cement,2001(10):11(in Chinese).
代新祥,文梓芸.土聚水泥的应用及研究现状[J].水泥,2001(10):11.
6 Yang Wencui. Effect of inorganic salts on pore structure and frost resistance of concrete[D]. Harbin: Harbin Institute of Technology,2009(in Chinese).
杨文萃.无机盐对混凝土孔结构和抗冻性影响的研究[D].哈尔滨:哈尔宾工业大学,2009.
7 文梓芸,钱春香,等.混凝土工程与技术[M].武汉:武汉理工大学出版社,2004:38.
8 Deventer J S J V,Provis J L, Duxson P, et al. Chemical research and climate change as drivers in the commercial adoption of alkali activated materials[J]. Waste Biomass Valor,2010,1:145.
9 Li Kuan, Lu Duyou, Li Menghao, et al. Effect of water content on microstructure and reaction process of metakaolin-based geopolymers[J]. Journal of the Chinese Ceramic Society,2016,44(2):226(in Chinese).
李款,卢都友,李孟浩,等.用水量对偏高岭土基地聚合物微观结构及反应过程的影响[J].硅酸盐学报,2016,44(2):226.
10 杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000:235.
[1] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[2] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[3] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[4] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[5] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[6] 马骁, 谢雪鹏, 叶雄伟, 何巨鹏, 朱杰. 基于氮气吸附法的钙基地聚合物孔隙结构分形特征[J]. 材料导报, 2019, 33(12): 1989-1994.
[7] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[8] 郭思文, 邵媛, 古正富, 任国富, 张华光. 锌含量对铝基可降解合金降解速率的影响[J]. 材料导报, 2018, 32(6): 947-950.
[9] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[10] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[11] 陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆. 冷速对液态GaAs快速凝固过程中微观结构的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2351-2354.
[12] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[13] 袁琦, 茶丽梅, 明文全, 杨修波, 李石勇, 韩俊峰. 硒化温度对CIGS/Mo界面微观结构和化学成分的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1787-1790.
[14] 罗忠涛,刘垒,康少杰,王亚洲,杨久俊. 地聚合物固化/稳定有毒重金属及作用机理研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1834-1841.
[15] 周娩红,陈石林,杨建校,郭建光. 镀铜CF/ABS树脂复合材料的导电性能[J]. 《材料导报》期刊社, 2018, 32(10): 1592-1596.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed