Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 159-166    https://doi.org/10.11896/j.issn.1005-023X.2018.01.020
     材料综述 |
高性能混凝土研究进展Ⅰ:原材料和配合比设计方法
董方园1(),郑山锁1(),宋明辰1,张艺欣1,郑捷1,秦卿1,2
1 西安建筑科技大学土木工程学院,西安 710055
2 西安科技大学建筑与土木工程学院,西安 710054
Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method
Fangyuan DONG1(),Shansuo ZHENG1(),Mingchen SONG1,Yixin ZHANG1,Jie ZHENG1,Qing QIN1,2
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055;
2 Civil and Architecture Engineering, Xi’an University of Science and Technology, Xi’an 710054;
下载:  全 文 ( PDF ) ( 1098KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

高性能混凝土具有高工作性、高体积稳定性和高耐久性等优异性能,被称为“21世纪混凝土”。掺入活性矿物掺合料和化学外加剂等组分,可以配制出满足工程施工要求的高性能混凝土,且矿物掺和料替代部分水泥可以减少水泥用量,降低CO2排放量,缓解环境恶化。总结了高性能混凝土中矿物掺合料和化学外加剂的研究进展,介绍了国内外高性能混凝土的配合比设计方法的应用,并对高性能混凝土的现状和发展趋势进行了讨论。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董方园
郑山锁
宋明辰
张艺欣
郑捷
秦卿
关键词:  高性能混凝土  矿物掺合料  化学外加剂  配合比设计方法    
Abstract: 

High performance concrete, with high workability, high volume stability, high durability and other excellent properties, is known as “Twenty-first Century Concrete”. High performance concrete that meets the requirement of the construction could be produced through the incorporation of mineral admixture and chemical admixture components. And mineral admixtures replace part of cement can reduce the dosage of cement, then reduce CO2 emissions and alleviate the deterioration of the environment. This paper summarized the research progress of mineral admixture and chemical admixture in high performance concrete, introduced application of mix proportion design method at home and abroad, then the current situation and development trend of high performance concrete were discussed.

Key words:  high performance concrete    mineral admixture    chemical admixture    mix proportion design method
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TU528  
基金资助: 国家科技支撑计划(2013BAJ08B03);国家自然科学基金(51678475);陕西省重点研发计划(2017ZDXM-SF-093)
作者简介:  董方园:女,1992年生,硕士研究生,研究方向为高性能混凝土 E-mail: dongfangyuan2013@163.com
引用本文:    
董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅰ:原材料和配合比设计方法[J]. 《材料导报》期刊社, 2018, 32(1): 159-166.
Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method. Materials Reports, 2018, 32(1): 159-166.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.020  或          http://www.mater-rep.com/CN/Y2018/V32/I1/159
  
  
  
[1] 冯乃谦 . 高性能混凝土[M]. 北京: 中国建筑工业出版社, 1996: 6.
[2] 吴中伟 . 高性能混凝土[M]. 北京: 中国铁道出版社, 1999: 10.
[3] Wu Zhongwei . High performance concrete—Green concrete[J]. China Concrete and Cement Products, 2000(1):3(in Chinese).
[3] 吴中伟 . 高性能混凝土——绿色混凝土[J]. 混凝土与水泥制品, 2000(1):3.
[4] CECS 207:2006 ECS 207:2006. . 高性能混凝土应用技术规程[S].北京:中国计划出版社, 2006: 2.
[5] 乔英杰 . 特种水泥与新型混凝土[M]. 哈尔滨: 哈尔滨工程大学出版社, 1998: 163.
[6] Yang Yonggan . Study on the correlation of surface hardness and strength of high performance concrete and its mechanism[D]. Nanjing: Southeast University, 2015(in Chinese).
[6] 杨永敢 . 高性能混凝土表层硬度与强度的相关性及其机理研究[D]. 南京: 东南大学, 2015.
[7] Su Yang . Experimental reseach on the influence of coarse aggregates on the properties of high performance concrete[D]. Beijing: Beijing Jiaotong University, 2013(in Chinese).
[7] 苏阳 . 粗骨料对高性能混凝土性能影响的试验研究[D]. 北京: 北京交通大学, 2013.
[8] Zhen Guangchang, Bao Xiaoqin, Dou Junrong . Effect of coarse aggregate on high performance concrete [J]. Concrete, 1999(4):31(in Chinese).
[8] 甄广常, 鲍晓琴, 窦俊荣 . 粗集料对高性能混凝土的影响 [J]. 混凝土, 1999(4):31.
[9] Ye Jianxiong, Liao Jiaqing, Yang Changhui . Influence of fine aggregate on initial shrinkage of high performance concrete[J]. Journal of Chongqing University, 2009,32(2):168(in Chinese).
[9] 叶建雄, 廖佳庆, 杨长辉 . 细集料对高性能混凝土早期塑性收缩开裂的影响[J].重庆大学学报, 2009,32(2):168.
[10] Xing Feng, Leng Faguang, Feng Naiqian , et al. The quantity effects of aggregate of high performance concrete[J]. Building Science Research of Sichuan, 2001,27(2):43(in Chinese).
[10] 邢锋, 冷发光, 冯乃谦 , 等. 高性能混凝土骨料数量效应研究[J].四川建筑科学研究, 2001,27(2):43.
[11] BenhelalEmad, Zahedi Gholamreza, Shamsaei Ezzatollah , et al. Global strategies and potentials to curb CO2 emissions in cement industry[J]. Journal of Cleaner Production, 2013,51(1):142.
[12] Siddique Rafat, , Performance characteristics of high-volume Class F fly ash concrete[J]. Cement & Concrete Research, 2004,34(3):487.
[13] Zhao Qingxin, Sun Wei, Zheng Keren , et al. Influence of fly ash proportion on creep characteristics of high performance concrete and its machanism[J]. Journal of the Chinese Ceramic Society, 2006,34(4):446(in Chinese).
[13] 赵庆新, 孙伟, 郑克仁 , 等. 粉煤灰掺量对高性能混凝土徐变性能的影响及其机理[J]. 硅酸盐学报, 2006,34(4):446.
[14] Wang Chengqi, Zhang Yueran . Experimental study of fly ash high performance serf-compacting marine concrete[J]. New Building Materials, 2011(9):63(in Chinese).
[14] 王成启, 张悦然 . 粉煤灰海工自密实高性能混凝土的试验研究[J]. 新型建筑材料, 2011(9):63.
[15] Olivia Monita, Nikraz Hamid . Properties of fly ash geopolymer concrete designed by Taguchi method[J]. Materials & Design, 2012,36:191.
[16] Ozbay Erdogan, Gesoglu Mehmet, Guneyisi Erhan . Transport properties based multi-objective mix proportioning optimization of high performance concretes[J]. Materials and Structures, 2011,44(1):139.
[17] FloresMedina N, Barluenga G, Hernández-Olivares F . Combined effect of polypropylene fibers and silica fume to improve the durability of concrete with natural pozzolans blended cement[J]. Construction and Building Materials, 2015,96:556.
[18] Ma Peng, . Study oncarbonation resistance of high performance concrete with rompound admixtures[D]. Nanjing: Nanjing Forestry University, 2012(in Chinese).
[18] 马鹏 . 复合型掺合料高性能混凝土抗碳化性能的研究[D]. 南京: 南京林业大学, 2012.
[19] LeeN K, Lee H K . Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Construction & Building Materials, 2013,47(5):1201.
[20] YangWenwu, Qian Jueshi, Fan Yingru . Effect of granulated blast furnace slag on both frost-resistance and chloride ions diffusion properties of marine concrete[J]. Journal of the Chinese Ceramic Society, 2009,37(1):29(in Chinese).
[20] 杨文武, 钱觉时, 范英儒 . 磨细高炉矿渣对海工混凝土抗冻性和氯离子扩散性能的影响[J].硅酸盐学报, 2009,37(1):29.
[21] Li Z, Feng Q G Zhu H Y . et al. Reseach on machanical properties and durability of slag concrete[J]. Concrete, 2014(7):37(in Chinese).
[21] 李贞, 冯庆革, 朱惠英 , 等. 矿渣混凝土力学性能及耐久性能的研究[J]. 混凝土, 2014(7):37.
[22] Ye Guang, Nguyen V T . Mitigation of autogenous shrinkage of ultra-high performance concrete by rice husk ash[J]. Journal of the Chinese Ceramic Society, 2012,40(2):212.
[23] Feng Qingge, Yang Yi, Tong Zhangfa , et al. Freezing and thawing resistance of concrete incorporating highly active rice husk ash[J]. Journal of the Chinese Ceramic Society, 2008,36:136.
[24] Zhuang Yizhou,, Zheng Haibin, , et al. Experimental study on the effect of rice husk ash on the performance of ultra high performance concrete[J]. China Concrete and Cement Products, 2012(6):10(in Chinese).
[24] 庄一舟, 郑海彬, 季韬 , 等. 稻壳灰替代硅灰对超高性能混凝土性能影响的试验研究[J]. 混凝土与水泥制品, 2012(6):10.
[25] Ming Yang, Chen Ping, Li Ling, , et al. .Experimental study on slag and zeolite powder composite admixture in concrete[J]. China Concrete and Cement Products, 2011(12):10(in Chinese).
[25] 明阳, 陈平, 李玲 , 等. 矿渣、沸石粉复合掺合料在混凝土中的试验研究[J]. 混凝土与水泥制品, 2011(12):10.
[26] Cao Xiong, . Research on the preparation and crack resistance at early-age of concrete with zeolite power[D]. Haikou: Hainan University, 2014(in Chinese).
[26] 曹雄 . 沸石粉掺合料混凝土配制及其早龄期抗裂性能研究[D]. 海口: 海南大学, 2014.
[27] Jiang Guang, Rong Zhidan, Sun Wei . Effects of metakaolin on properties of high performance mortar[J]. Journal of Southeast University (Natual Science Edition), 2015,45(1):121(in Chinese).
[27] 姜广, 戎志丹, 孙伟 . 偏高岭土对高性能水泥砂浆性能的影响[J].东南大学学报(自然科学版), 2015,45(1):121.
[28] Deng Tianming, Zhang Kaifeng, Meng Gang, . et al. Experimental study on concrete with solid sulfur ash and pulverized sulfur slag as admixture[J]. China Concrete and Cement Products, 2015(12):14(in Chinese).
[28] 邓天明, 张凯峰, 孟刚 , 等. 固硫灰与磨细固硫渣复掺用作混凝土掺合料的试验研究[J]. 混凝土与水泥制品, 2015(12):14.
[29] Wang Bin, . Influence on performance of high-flowing concrete by admixture and maximum dosage determined[D]. Baoding: Hebei Agricultural University, 2014(in Chinese).
[29] 王彬 . 掺合料对大流动性混凝土性能影响及最大掺量确定[D]. 保定: 河北农业大学, 2014.
[30] Zhang Lanfang, Yue Yu, . Study on high strength concrete with fne limestone powder[J]. Concrete, 2010(10):107(in Chinese).
[30] 张兰芳, 岳瑜 . 磨细石灰石粉配制超早强、高强混凝土[J].混凝土, 2010(10):107.
[31] Chen Jianxiong, Li Hongfang, Chen Hanbin . Study of perfor-mances of lime stone ultra-high-strength high performance concrete[J]. Construction Technology, 2005,34(4):27(in Chinese).
[31] 陈剑雄, 李鸿芳, 陈寒斌 . 石灰石粉超高强高性能混凝土性能研究[J].施工技术, 2005,34(4):27.
[32] LiChongzhi, Feng Naiqian, Wang Dongmin , et al. Preparation and characterization and its function mechanism[J]. Journal of the Chinese Ceramic Society, 2005,33(1):87(in Chinese).
[32] 李崇智, 冯乃谦, 王栋民 , 等. 梳形聚羧酸系减水剂的制备、表征及其作用机理[J].硅酸盐学报, 2005,33(1):87.
[33] RanQianping, Miu Changwen, Liu Jiaping , et al. Action mec-hanism and effect of side chain length of comb-like copolymer dispersant on dispersion of cement paste[J]. Journal of the Chinese Ceramic Society, 2009,37(7):1153(in Chinese).
[33] 冉千平, 缪昌文, 刘加平 , 等. 梳形共聚物分散剂侧链长度对水泥浆体分散性能的影响及机理[J].硅酸盐学报, 2009,37(7):1153.
[34] KongXiangming, Liu Hui, Jiang Lingfei , et al. Influence of silani-zed polycarboxylate polymerson fluidity and strength development of cementitious material[J]. Journal of the Chinese Ceramic Society, 2014,42(5):635(in Chinese).
[34] 孔祥明, 刘辉, 蒋凌飞 , 等. 含硅烷官能团聚羧酸减水剂对水泥浆体流动性和力学性能的影响[J]. 硅酸盐学报, 2014,42(5):635.
[35] ShiChen, Zhang Ge, He Tingshu , et al. Effects of superplasticizers on the stability and morphology of ettringite[J]. Construction & Building Materials, 2016,112:261.
[36] ShiChen, He Tingshu, Zhang Ge , et al. Effects of su-perplasticizers on carbonation resistance of concrete[J]. Const-ruction and Building Materials, 2016,108:48.
[37] WuYong Gen, Cai Liang Cai Fu Ya Wei. Durability of green high performance alkali-activated slag pavement concrete[J]. Applied Mechanics & Materials, 2011, 99-100:158.
[38] Ayd?n Serdar, Baradan Bülent . The effect of fiber properties on high performance alkali-activated slag/silica fume mortars[J]. Composites Part B: Engineering, 2013,45(1):63.
[39] Lin Xiqiang, Wang Dongmin, Xu Chenyang , et al. The influence of sulfate/chlorine salt activators on activity of fly ash[J]. Coal Ash, 2012,24(1):4(in Chinese).
[39] 蔺喜强, 王栋民, 许晨阳 , 等. 硫酸盐类及氯盐类激发剂对粉煤灰活性的影响[J].粉煤灰, 2012,24(1):4.
[40] Lin Xiqang, Wang Dongmin Zhang Tao , et al. Research of the microscopic structure and fly ash activity excited by Organic-inorganic compound activator[J]. Fly Ash Comprensive Utilization, 2013(1):34(in Chinese).
[40] 蔺喜强, 王栋民, 张涛 , 等. 有机-无机复合激发剂对粉煤灰活性激发及微观结构研究[J]. 粉煤灰综合利用, 2013(1):34.
[41] 缪昌文 . 高性能混凝土外加剂[M]. 北京: 化学工业出版社, 2008: 144.
[42] Sant Gaurav, Lothenbach Barbara, Juilland Patrick , et al. The origin of early age expansions induced in cementitious materials containing shrinkage reducing admixtures[J]. Cement & Concrete Research, 2011,41(3):218.
[43] HanHyung Sub, Kim Jong Kyu, Yong Wook Jung . Development and performance assessment of the high-performance shrinkage reducing agent for concrete[J]. Advances in Materials Science and Engineering, 2016,2016:1.
[44] Cheng Zhengmao . The mechanism and action requirements of shrinkage reducing admixture of concrete[D]. Chongqing: Chongqing University, 2015(in Chinese).
[44] 程正茂 . 混凝土减缩剂的作用机理与作用条件[D]. 重庆:重庆大学, 2015.
[45] 游宝坤 . 膨胀剂及其补偿收缩混凝土[M]. 北京: 中国建材工业出版社, 2005: 3.
[46] SherirMohamed A A, Hossain Khandaker M A, Lachemi Mohamed . Self-healing and expansion characteristics of ceme-ntitious composites with high volume fly ash and MgO-type expansive agent[J]. Construction & Building Materials, 2016,127:80.
[47] HanJianguo, Jia Di, Yan Peiyu . Understanding the shrinkage compensating ability of type K expansive agent in concrete[J]. Construction & Building Materials, 2016,116:36.
[48] ZhangZhiyong, Ran Qianping, Yang Yong , et al. Preparation and performance of aminopolyether based antifoamer for concrete[J]. New Building Materials, 2012,39(9):29(in Chinese).
[48] 张志勇, 冉千平, 杨勇 , 等. 胺基聚醚类混凝土消泡剂的制备与性能[J].新型建筑材料, 2012,39(9):29.
[49] Sun Zhenping, Jiang Zhengwu, Wu Huihua . Investigations oil properties of underwater antiwashout concrete[J]. Journal of Building Material, 2006,9(3):279(in Chinese).
[49] 孙振平, 蒋正武, 吴慧华 . 水下抗分散混凝土性能的研究[J].建筑材料学报, 2006,9(3):279.
[50] Wang Lijiu, Ma Liguo, Wang Baomin . Effecte of super retarder to the compotibility and durability of concrete[J]. Low Temprerature Architecture Technology, 2003(2):4(in Chinese).
[50] 王立久, 马立国, 王宝民 . 超缓凝剂对混凝土相容性和耐久性的影响研究[J]. 低温建筑技术, 2003(2):4.
[51] TanHongbo, Lin Chaoliang, Ma Baoguo , et al. Research on the concrete slump-lost controlling ability in binary system of different retarder and polycarboxylate superplasticizer under the condition of separate addition[J]. Bulletin of the Chinese Ceramic Society, 2015,34(4):1015(in Chinese).
[51] 谭洪波, 林超亮, 马保国 , 等. 分次加入不同缓凝剂与聚羧酸减水剂二元体系保坍性的研究[J].硅酸盐通报, 2015,34(4):1015.
[52] TangYuchao, Chen Liang, Luo Zuoqiu , et al. Development and performance research of new high-plastic-super-retarding admixture[J]. Materials Review, 2015,29:354(in Chinese).
[52] 唐玉超, 陈良, 罗作球 , 等. 新型高保塑超缓凝剂的研制与性能研究[J].材料导报, 2015,29(S1):354.
[53] He Tingshu, Shen Fuqiang, Wang Fuchuan , et al. Influence and combination of superplasticizer and retarders on process of cement hydration[J]. Journal of the Chinese Ceramic Society, 2007,35(6):796(in Chinese).
[53] 何廷树, 申富强, 王福川 , 等. 复合使用高效减水剂与缓凝剂对水泥水化历程的影响[J]. 硅酸盐学报, 2007,35(6):796.
[54] Wu Yonghua, He Tingshu, Shen Fuqiang , et al. Study on the synergistic retarding effects of the compounding of superplas-ticizer with retarders[J]. Concrete, 2008(6):47(in Chinese).
[54] 伍勇华, 何廷树, 申富强 , 等. 高效减水剂与缓凝剂复合使用的协同缓凝效应研究[J]. 混凝土, 2008(6):47.
[55] MehtaP K, A?tcin P C . Principles underlying production of high-performance concrete[J]. Cement Concrete & Aggregates, 1990,12(2):70.
[56] HanJianguo, Yan Peiyu . Mix proportion design method and systematical high performance concrete[J]. Journal of the Chinese Ceramic Society, 2006,34(8):1026(in Chinese).
[56] 韩建国, 阎培渝 . 系统化的高性能混凝土配合比设计方法[J].硅酸盐学报, 2006,34(8):1026.
[57] DomoneP L J, Soutsos M N . Approach to the proportioning of high-strength concrete mixes[D]. Glasgow: University of Strath-clyde, 1994.
[58] LeHa Thanh, Müller Matthias, Siewert Karsten , et al. The mix design for self-compacting high performance concrete containing various mineral admixtures[J]. Materials & Design, 2015,72(26):51.
[59] Abo-El-Enein Salah A, El-Sayed Hamdy A, Ali A H , et al. Physico-mechanical properties of high performance concrete using different aggregates in presence of silica fume[J]. HBRC Journal, 2013,10(1):43.
[60] Lian Huizhen, Lu Xinying . Principles and methods of high performance concrete design according to durability requirement[J]. Architecture Technology, 2001,32(1):8(in Chinese).
[60] 廉慧珍, 路新瀛 . 按耐久性设计高性能混凝土的原则和方法[J].建筑技术, 2001,32(1):8.
[61] Chen Jiankui, Wang Dongmin . New mix design method for HPC—overall calculation method[J].Journal of the Chinese Ceramic Society, 2000,28(2):194(in Chinese).
[61] 陈建奎, 王栋民 . 高性能混凝土(HPC)配合比设计新法——全计算法[J]. 硅酸盐学报, 2000,28(2):194.
[62] Wan Chaojun . An experienced discuss on mix proportion design for high strength and super-high strength high performance concretes[J]. Concrete, 2002(3):41(in Chinese).
[62] 万朝均 . 高强超高强高性能混凝土配合比设计经验探讨[J]. 混凝土, 2002(3):41.
[63] BharatkumarB H, Narayanan R, Raghuprasad B K , et al. Mix proportioning of high performance concrete[J]. Cement & Concrete Composites, 2001,23(1):71.
[64] NgPui-Lam, Kwan Albert Kwok-Hung, Li Leo Gu . Packing and film thickness theories for the mix design of high-performance concrete[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2016,17(10):759.
[65] YehI Cheng . Computer-aided design for optimum concrete mixtures[J]. Cement & Concrete Composites, 2007,29(3):193.
[66] Liu Guohua, Chen Bin, Wang Shuyu . et al. Optimization of concrete mixture on the basis of artificial neural network and Monte-Carlo techniques[J]. Journal of Hydroelectric Engineering, 2003(4):45(in Chinese).
[66] 刘国华, 陈斌, 汪树玉 , 等. 基于人工神经网络和Monte-Carlo法的混凝土配合比优化设计研究[J]. 水力发电学报, 2003(4):45.
[67] ChenXiaodong, Chen Bin, Liu Guohua . Optimization of concrete mixture based on BP ANN genetic algorithms[J]. Journal of Hydroelectric Engineering, 2007,26(5):59(in Chinese).
[67] 陈晓东, 陈斌, 刘国华 . 基于BP ANN-GA混合型算法的混凝土配合比优化设计研究[J]. 水力发电学报, 2007,26(5):59.
[68] Liu Cuilan, Li Gaofeng, Qiao Hongxia , et al. Optimization design of ingredient of high performance fly ash concrete based on the genetical gorithm[J]. Journal of Lanzhou University of Technology, 2006,32(5):133(in Chinese).
[68] 刘翠兰, 李高峰, 乔红霞 , 等. 基于遗传算法的粉煤灰高性能混凝土配合比优化设计[J].兰州理工大学学报, 2006,32(5):133.
[69] Zhan Baojian, Shui Zhonghe, Chen Wei , et al. Mix optimization of high performance concrete based on efficacy coefficient method[J]. Journal of Wuhan University of Technology, 2009(4):29(in Chinese).
[69] 占宝剑, 水中和, 陈伟 , 等. 基于功效函数法的高性能混凝土配合比优化[J]. 武汉理工大学学报, 2009(4):29.
[1] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[2] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[3] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[4] 周昱程, 刘娟红, 纪洪广, 付士峰, 谷峪. 温度-复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究[J]. 材料导报, 2019, 33(16): 2671-2676.
[5] 常洪雷, 金祖权, 刘健. 自干燥及水分扩散引起的高性能混凝土内部湿度演变[J]. 材料导报, 2019, 33(14): 2370-2375.
[6] 董方园,郑山锁,宋明辰,张艺欣,郑捷,秦卿. 高性能混凝土研究进展Ⅱ:耐久性能及寿命预测模型[J]. 《材料导报》期刊社, 2018, 32(3): 496-502.
[7] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[8] 余自若, 沈捷, 贾方方, 安明喆. 超高性能混凝土与普通混凝土的黏结抗冻性能*[J]. CLDB, 2017, 31(23): 138-144.
[9] 杨医博, 杨凯越, 吴志浩, 林少群, 丘广宏, 燕哲, 彭章锋, 林燕姿, 郭文瑛, 王恒昌. 配筋超高性能混凝土用作免拆模板对短柱力学性能影响的实验研究*[J]. CLDB, 2017, 31(23): 120-124.
[10] 程俊, 刘加平, 刘建忠, 张倩倩, 张丽辉, 林玮, 韩方玉. 含粗骨料超高性能混凝土力学性能研究及机理分析*[J]. CLDB, 2017, 31(23): 115-119.
[11] 张丽辉, 刘加平, 周华新, 刘建忠, 张倩倩, 韩方玉. 粗骨料与钢纤维对超高性能混凝土单轴拉伸性能的影响*[J]. CLDB, 2017, 31(23): 109-114.
[12] 张文华, 陈振宇. 超高性能混凝土动态冲击拉伸性能研究*[J]. CLDB, 2017, 31(23): 103-108.
[13] 王倩楠, 顾春平, 孙伟. 水泥-粉煤灰-硅灰基超高性能混凝土水化过程微观结构的演变规律*[J]. CLDB, 2017, 31(23): 85-89.
[14] 吕生华, 孙立, 张佳, 胡浩岩, 雷颖, 侯永刚. 具有大规模规整致密花状微观结构形貌高/超高性能氧化石墨烯/水泥基复合材料*[J]. CLDB, 2017, 31(23): 78-84.
[15] 张倩倩, 刘建忠, 周华新, 光鉴淼, 张丽辉, 林玮, 刘加平. 超高性能混凝土流变特性及其对纤维分散性的影响*[J]. CLDB, 2017, 31(23): 73-77.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed