Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23110219-7    https://doi.org/10.11896/cldb.23110219
  无机非金属及其复合材料 |
含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究
郑建岚1,2, 王雅思1,2,*, 陈僖2,3, 张旺城2,3
1 福建江夏学院工程学院,福州 350108
2 福建省环保节能型高性能混凝土协同创新中心,福州 350108
3 福州大学土木工程学院,福州 350108
Study on Corrosion Resistance of Reinforcement in Recycled Aggregate Concrete with Chloride Salt in Original Concrete
ZHENG Jianlan1,2, WANG Yasi1,2,*, CHEN Xi2,3, ZHANG Wangcheng2,3
1 College of Engineering, Fujianjiangxia University, Fuzhou 350108, China
2 Coordinative Innovation Center for Environmentally Friendly and Energy Saving HPC of Fujian Province, Fuzhou 350108, China
3 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
下载:  全 文 ( PDF ) ( 3725KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沿海地区废弃混凝土受氯离子侵蚀,为使其更好地再生利用,探究含氯再生骨料混凝土的改性方法及钢筋抗锈蚀性能,以矿物掺合料种类及掺量、再生骨料强化为变量,设计15组混凝土,对混凝土中钢筋通电加速锈蚀,并通过电化学工作站的线性极化法和电化学阻抗谱法测试其钢筋电化学指标。结果表明:含氯再生骨料混凝土中钢筋锈蚀进程快于普通不含氯再生骨料混凝土;纳米SiO2溶液强化含氯再生骨料,以及在混凝土中复掺矿物掺合料均可提高含氯再生骨料混凝土钢筋抗锈蚀性能;通过强化改性的含氯再生骨料混凝土的钢筋抗锈蚀性能不低于普通再生骨料混凝土。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑建岚
王雅思
陈僖
张旺城
关键词:  再生骨料混凝土  氯离子侵蚀  钢筋抗锈蚀性能  矿物掺合料  纳米SiO2强化    
Abstract: Abandoned concrete in coastal areas were corroded by chloride ions. In order to better recycle the concrete corroded by chloride ions, and explore the corrosion properties of reinforcement in recycled aggregate concrete with chloride salt in original concrete. Here 15 groups of concrete were designed with the types and contents of mineral admixtures and aggregate strengthening as variables. After accelerated corrosion by electrification, the steel reinforcement electrochemical indexes were measured by linear polarization method and electrochemical impedance spectroscopy method of electrochemical work. The results show that the corrosion process of steel reinforcement in chlorine-containing recycled aggregate concrete is faster than that in ordinary recycled concrete. Both nano-SiO2 solution strengthening recycled aggregate and adding mineral admixtures can commonly improve the corrosion resistance of recycled concrete with chloride salt in original concrete. And by strengthening and modifying, the corrosion resistance of chloride containing recycled aggregate concrete can not lower than that of ordinary recycled aggregate concrete without chlorine.
Key words:  recycled aggregate concrete    chloride ion corrosion    corrosion resistance of reinforcement    mineral admixture    nano-SiO2 strengthening
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TU528  
基金资助: 国家自然科学基金联合基金重点支持项目(U1605242);福建省财政厅专项(闽财指[2022]840号);福建省自然科学基金(2021J011231);福建省教育厅中青年教师教育科研项目(JAT200368)
通讯作者:  *王雅思,博士,副教授。2011年7月毕业于福州大学土木工程学院,2022年7月在福州大学结构工程专业取得博士学位。主要从事高性能混凝土和再生混凝土材料与结构的研究工作。2014036@fjjxu.edu.cn   
作者简介:  郑建岚,博士,教授,国家级百千万人才工程人选,福建省杰出科技人才,福建省科技创新领军人才,享受国务院特殊津贴专家,教育部全国高等学校优秀教师。长期从事结构工程与现代混凝土材料研发和培养博士研究生、硕士研究生的工作。近年来在自密实高性能混凝土及其结构的研究与应用、高强与高性能混凝土及再生骨料混凝土体积稳定性研究与应用、建筑废弃物资源化利用等方面开展了系统深入的工作。获国家技术发明二等奖、福建省科学技术一等奖。
引用本文:    
郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
ZHENG Jianlan, WANG Yasi, CHEN Xi, ZHANG Wangcheng. Study on Corrosion Resistance of Reinforcement in Recycled Aggregate Concrete with Chloride Salt in Original Concrete. Materials Reports, 2024, 38(22): 23110219-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23110219  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23110219
1 Ding Y H, Wu J, Xu P, et al. Journal of Wuhan University of Technology(Materials Science), 2021, 36(1), 77.
2 Wang Y S, Zheng J L, You F. Materials Reports, 2021, 35(5), 5053(in Chinese).
王雅思, 郑建岚, 游帆. 材料导报, 2021, 35(5), 5053.
3 Silva R V, De Brito J, Dhir R K. Construction and Building Materials, 2014, 65, 201.
4 El Hassan J, Bressolette P, Chateauneuf A, et al. Engineering Structures, 2010, 32(10), 3279.
5 Sidorova A, Vazquez R E, Barra B M, et al. Construction and Building Materials, 2014, 68(2), 680.
6 Chen C H, Liu R G, Zhu P H, et al. Journal of Building Materials, 2021, 24(6), 1216(in Chinese).
陈春红, 刘荣桂, 朱平华, 等. 建筑材料学报, 2021, 24(6), 1216.
7 Guo Z G, Chen C, Lehman D E, et al. Cement and Concrete Composites, 2020, 24(2), 171.
8 Xue F C, Chu J J. Journal of Building Engineering, 2022, 51, 104363.
9 Long L, Dong X X, Chu S H, et al. Construction and Building Materials, 2021, 301, 1.
10 Xiao J Z, Li B, Zhang K J, et al. Journal of Tongji University(Natural Science), 2021, 49(1), 30(in Chinese).
肖建庄, 李标, 张凯建, 等. 同济大学学报(自然科学版), 2021, 49(1), 30.
11 Dimitriou G, Savva P, Petrou M F. Construction and Building Materials, 2018, 158, 228.
12 Zhang P, Wang W S, Zheng Y X, et al. Journal of Renewable Materials, 2023, 11(4), 1853.
13 Ratapon S, Chai J, Amde M. Cement and Concrete Composites, 2012, 34(7), 848.
14 Kumar M P, Mini K M, Rangrajan M. Construction and Building Materials, 2018, 182, 252.
15 Chen X. Study on reinforcement corrosion performance in recycled aggregate concrete with chloride salt in original concrete. Master's Thesis, Fuzhou University, China, 2018(in Chinese).
陈僖. 原生混凝土受氯离子侵蚀的再生骨料混凝土中钢筋锈蚀性能研究. 硕士学位论文, 福州大学, 2018.
16 Shi J J, Sun W. Journal of Southeast University(Natural Science), 2011, 41(5), 1042(in Chinese).
施锦杰, 孙伟. 东南大学学报(自然科学版), 2011, 41(5), 1042.
17 Zhang A Y, Chang J, Juan J. Construction and Building Materials, 2018, 167, 587.
18 Hossain M M, Karim M R, Hasan M, et al. Construction and Building Materials, 2016, 116, 128.
19 Shi J J, Sun W. Journal of Southeast University(Natural Science), 2010, 40(6), 1298(in Chinese).
施锦杰, 孙伟. 东南大学学报(自然科学版), 2010, 40(6), 1298.
20 Chen X F. Journal of Building Engineering, 2022, 51, 104363.
21 Long L, Dong X X, Sojobi A O, et al. Construction and Building Materials, 2021, 308, 1.
22 Zheng J L, Hu W, Wang Y S. Engineering Journal of Wuhan University, 2020, 53(3), 229(in Chinese).
郑建岚, 胡伟, 王雅思. 武汉大学学报(工学版), 2020, 53(3), 229.
[1] 张伟杰, 盛广侠, 王兰心, 王赟程, 王立国, 刘志勇, 蒋金洋, 张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述[J]. 材料导报, 2024, 38(22): 23080140-18.
[2] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[3] 许应杰, 陈红鸟. 长龄期机制砂再生骨料混凝土的断裂参数和断裂过程区[J]. 材料导报, 2024, 38(19): 23040205-10.
[4] 田小平, 王长龙, HidayatiAsrah, Lim Chung Han, 平浩岩, 齐洋, 马锦涛, 荆牮霖, 刘治兵, 郑永超, 翟玉新, 刘枫. 钒钛铁尾矿制备绿色建筑材料的研究进展[J]. 材料导报, 2024, 38(19): 23070040-10.
[5] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[6] 王少伟, 肖焰钰, 朱平华, 严先萃, 夏群. 钙溶蚀对混凝土抗氯离子侵蚀性能的影响[J]. 材料导报, 2024, 38(16): 23020121-7.
[7] 吴浪, 鲍蓉, 戴健, 雷斌. 石灰石-煅烧黏土-水泥(LC3)体系的水化动力学模型[J]. 材料导报, 2024, 38(15): 23020253-6.
[8] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[9] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[10] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[11] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[12] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[13] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[14] 鲍玖文, 庄智杰, 张鹏, 魏佳楠, 高嵩, 赵铁军. 基于相似性的海洋潮汐区环境混凝土抗氯盐侵蚀性能研究进展[J]. 材料导报, 2021, 35(7): 7087-7095.
[15] 刘进, 呙润华, 张增起. 磷酸镁水泥性能的研究进展[J]. 材料导报, 2021, 35(23): 23068-23075.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed