Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 22010023-8    https://doi.org/10.11896/cldb.22010023
  无机非金属及其复合材料 |
增强珊瑚骨料混凝土毛细吸水性能与预测模型
苏丽1, 牛荻涛2,*, 黄大观3, 张云升1, 乔宏霞1
1 兰州理工大学土木工程学院,兰州 730050
2 西安建筑科技大学土木工程学院,西安 710055
3 西安理工大学土木建筑工程学院,西安 710048
Capillary Water Absorption Properties and Prediction Model of Reinforced Coral Aggregate Concrete
SU Li1, NIU Ditao2,*, HUANG Daguan3, ZHANG Yunsheng1, QIAO Hongxia1
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
3 School of Civil Engineering and Architecture, Xi'an University of Technology, Xi'an 710048, China
下载:  全 文 ( PDF ) ( 18385KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作设计了三种类型的珊瑚骨料混凝土(CAC),包括粉煤灰CAC、硅灰CAC和矿渣CAC,粉煤灰CAC为对照试件。采用改进的ASTM C1585方法,研究了养护28 d和60 d后CAC的毛细吸水特性,分析了硅灰和矿渣对CAC毛细吸水性能和孔隙率的影响,并建立了初始吸水率预测模型。结果表明:硅灰和矿渣的掺入均显著减低了CAC的毛细吸水率,但随着硅灰和矿渣含量的增大,硅灰和矿渣对CAC毛细吸水率的降低作用减弱。随着养护时间的延长,硅灰和矿渣对毛细吸水率的降低作用也减弱。28 d时,含有4%硅灰或20%矿渣的CAC毛细吸水率是最低的;60 d时,含有6%硅灰或20%矿渣的CAC毛细吸水率是最低的。在整个吸水阶段,硅灰对CAC累积吸水量的降低作用大于矿渣。添加4%的硅灰或20%的矿渣能够有效降低CAC的孔隙率,同时,理论孔体积和二次吸水率之间有较好的相关性。通过回归分析建立的CAC初始吸水率预测模型能够预测不同含量硅灰和矿渣CAC的初始毛细吸水率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏丽
牛荻涛
黄大观
张云升
乔宏霞
关键词:  珊瑚骨料混凝土  矿物掺合料  毛细吸水  吸水率  孔隙率    
Abstract: Three types of coral aggregate concrete (CAC) were designed including fly ash CAC, silica fume CAC and slag CAC, fly ash CAC was used as a reference sample. The improved ASTM C1585 method was used to investigate the capillary water absorption characteristics of CAC at 28 d and 60 d. The influence of silica fume and slag on CAC capillary water absorption and porosity was analyzed, and the initial sorptivity prediction model was established. The results indicate that the incorporation of silica fume and slag significantly reduced the capillary water absorption of CAC, but the reducing effect on the capillary water absorption of CAC decreased with the increase of silica fume and slag content. With the increase of curing age, the decreasing effect of silica fume and slag on capillary water absorption is also weakened. At 28 d, the capillary water absorption of CAC containing 4% silica fume or 20% slag is the lowest;at 60 d, the capillary water absorption of CAC containing 6% silica fume or 20% slag is the lowest. In the entire water absorption stage, reduction effect of silica fume on the cumulative water absorption of CAC is greater than that of slag. Adding 4% silica fume or 20% slag can effectively reduce the porosity of CAC. At the same time, there is a good correlation between theoretical pore volume and secondary water absorption. The initial water absorption prediction model of CAC established by regression analysis can predict the initial water absorption rate of CAC with different content of silica fume and slag.
Key words:  coral aggregate concrete (CAC)    mineral admixture    capillary water absorption    sorptivity    porosity
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  TU528.01  
基金资助: 国家自然科学基金 (51590914)
通讯作者:  * 牛荻涛,西安建筑科技大学教授。1983年获学士学位。硕博连读,1991年获工学博士学位。同年加入西安建筑科技大学工作至今,主要从事混凝土结构耐久性研究。在国内外重要期刊发表文章300 多篇,申报发明专利50 余项。niuditao@163.com   
作者简介:  苏丽,2014年获学士学位,2016年获硕士学位,2021年获工学博士学位。主要从事绿色混凝土材料和混凝土耐久性研究,在国内外重要期刊发表论文10余篇。
引用本文:    
苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
SU Li, NIU Ditao, HUANG Daguan, ZHANG Yunsheng, QIAO Hongxia. Capillary Water Absorption Properties and Prediction Model of Reinforced Coral Aggregate Concrete. Materials Reports, 2023, 37(15): 22010023-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010023  或          http://www.mater-rep.com/CN/Y2023/V37/I15/22010023
1 Chen Z L, Chen T Y, Qu X M. Ocean Engineering, 1991, 9(3), 67 (in Chinese).
陈兆林, 陈天月, 曲勋明. 海洋工程, 1991, 9(3), 67.
2 Lyu B, Wang A, Zhang Z, et al. Cement and Concrete Composites, 2019, 100, 25.
3 Arumugam R A, Ramamurthy K. Magazine of Concrete Research, 1996, 48 (9), 141.
4 Rick A E. Concrete International, 1991, 13(1), 19.
5 Wu W, Wang R, Zhu C, et al. Construction and Building Materials, 2018, 185, 69.
6 Barbhuiya S A, Gbagbo J K, Russell M I, et al. Construction and Buil-ding Materials, 2009, 23(10), 3233.
7 Cheng S K, Shui Z H, Sun T, et al. Applied Clay Science, 2017, 141, 111.
8 Yang Z, Weiss W J, Olek J. Journal of Materials in Civil Engineering, 2006, 18(3), 424.
9 Henkensiefken R, Castro J, Bentz D, et al. Cement and Concrete Research, 2009, 39(10), 883.
10 Parrott L J. Materials and Structures, 1992, 25(5), 284.
11 Hall C. Magazine of Concrete Research, 1989, 41(147), 51.
12 Atzeni C, Massidda L, Sanna U. Magazine of Concrete Research, 1993, 45 (162), 11.
13 Liu X, Chia K S, Zhang M H. Construction and Building Materials, 2011, 25(1), 335.
14 Fu Q, Xie Y J, Long G C, et al. Journal of Building Materials, 2015, 18(1), 17 (in Chinese).
傅强, 谢友均, 龙广成, 等. 建筑材料学报, 2015, 18(1), 17.
15 He Z M, Long G C, Xie Y J, et al. Journal of Building Materials, 2012, 15(2), 190 (in Chinese).
贺智敏, 龙广成, 谢友均, 等. 建筑材料学报, 2012, 15(2), 190.
16 Canan T. Cement and Concrete Research, 2003, 33(10), 1637.
17 Tahir G, Salih Y. Building and Environment, 2007, 42(8), 3080.
18 Khatib J M, Clay R M. Cement and Concrete Research, 2004, 34(1), 19.
19 Razak H A, Chai H K, Wong H S. Cement and Concrete Composites, 2004, 26(7), 883.
20 ASTM International. Standard test method for measurement of rate of absorption of water by hydraulic cement concretes, PA:ASTM International, United States, 2013.
21 Diamond S. Cement and Concrete Research, 2000, 30(10), 1517.
22 Martys N S, Ferraris C F. Cement and Concrete Research, 1997, 27(5), 747.
23 Hu H M, Ma B G. Concrete mineral admixture, China Electric Power Press, China, 2016, pp. 66 (in Chinese).
胡红梅, 马保国. 混凝土矿物掺合料, 中国电力出版社, 2016, pp. 66.
24 Luo D M, Niu D T. Journal of Building Structures, 2019, 40 (1), 169 (in Chinese).
罗大明, 牛荻涛. 建筑结构学报, 2019, 40(1), 169.
25 Qiu J S, Zheng J J, Guan X, et al. Journal of Building Materials, 2017(6), 881 (in Chinese).
邱继生, 郑娟娟, 关虓, 等. 建筑材料学报, 2017(6), 881.
26 Yang L, Liu G, Gao D, et al. Construction and Building Materials, 2020, 272(147), 121945.
[1] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[2] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[3] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[4] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[5] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[6] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[7] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[8] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[9] 张定军, 韩筱, 朱金龙, 杨世元, 赵文锦. 反相微乳液聚合法制备的(AA-AM-C18DMAAC-St)四元共聚感温凝胶微球[J]. 材料导报, 2022, 36(5): 20120204-6.
[10] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[11] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[12] 代楠, 张育新, 李凯霖, 刘晓英, 董必钦, 封丽, 贾兴文. 硅藻土在胶凝材料领域的应用进展[J]. 材料导报, 2022, 36(14): 21030125-9.
[13] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[14] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土的电阻率模型[J]. 材料导报, 2022, 36(1): 20100189-6.
[15] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed