Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21100151-8    https://doi.org/10.11896/cldb.21100151
  金属与金属基复合材料 |
粉末冶金多孔铝的研究进展
张爵灵1,2,3, 王林山1,2,3,4,5,*, 郑逢时1,2,3, 胡强1,2,3,4,5, 汪礼敏1,2,3,4,5
1 有研科技集团有限公司金属粉体材料产业技术研究院,北京 101407
2 有研粉末新材料股份有限公司,北京 101407
3 北京有色金属研究总院,北京 100088
4 北京有研粉末新材料研究院有限公司,北京 101407
5 北京市金属粉末工程技术研究中心,北京 101407
Research and Development of Porous Aluminum Produced by Powder Metallurgy
ZHANG Jueling1,2,3, WANG Linshan1,2,3,4,5,*, ZHENG Fengshi1,2,3, HU Qiang1,2,3,4,5, WANG Limin1,2,3,4,5
1 Metal Powder Materials Industrial Technology Research Institute of GRINM, Beijing 101407, China
2 GRIPM Advanced Materials Co.,Ltd., Beijing 101407, China
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
4 Beijing GRIPM Advanced Materials Research Institute Co.,Ltd., Beijing 101407, China
5 Beijing Engineering Research Center of Metal Powder, Beijing 101407, China
下载:  全 文 ( PDF ) ( 9557KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粉末冶金多孔铝材料具有质轻、耐腐蚀、孔隙均匀可控、比表面积大、近净成形等优点,可用于含油轴承、过滤器、热管毛细芯、铝空气电池电极、金属电极集流体、吸能材料、催化剂载体等产品,在航空航天、电子、新能源等领域具有很大的应用潜力。由于铝活性较高,铝粉表面极易形成一层致密的氧化膜,阻碍烧结扩散的进行,严重影响粉末冶金多孔铝的性能。本文综述了烧结助剂和烧结工艺对粉末冶金多孔铝表面氧化膜破除机理的研究现状,重点介绍了压制烧结、松装烧结、放电等离子体烧结、浆料涂覆烧结法和非水基凝胶注模成形法等五种制备方法,探讨了粉末冶金多孔铝的研究方向,并对其发展趋势进行了展望,以期为粉末冶金多孔铝的发展提供借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张爵灵
王林山
郑逢时
胡强
汪礼敏
关键词:  多孔铝  粉末冶金  烧结助剂  烧结工艺  孔隙率    
Abstract: Powder metallurgy porous aluminum material has broad application prospects in aerospace, electronics, and new energy due to its advantages, including lightweight, corrosion resistance, uniform and controllable pores, large specific surface area, and near-net-shape. This kind of material is suitable for products such as self-lubricating bearing, filters, the capillary core of heat pipe, aluminum-air batteries, metal electrode current collectors, energy-absorbing materials, catalyst carrier, etc. The biggest challenge for fabricating powder metallurgy porous aluminum material is that the surface of the aluminum powder is always covered with a thermodynamically stable oxide film. The existence of oxide film impedes the sintering diffusion. In this paper, the disruption mechanism of the oxide film is reviewed from the aspects of sintering additives and sintering process. In addition, fabrication methods of powder metallurgy porous aluminum material such as pressing sintering, loose-powder sintering, paste coating-sintering, and non-aqueous gel injection molding method, are summarized. In order to provide reference for the development of powder metallurgy porous aluminum, the research directions of this kind of material are also introduced, and its development trend is predicted.
Key words:  porous aluminum    powder metallurgy    sintering aid    sintering process    porosity
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TB34  
基金资助: 国家重点研发计划(2021YFB3701902);北京市科委项目(Z181100003118009)
通讯作者:  * 王林山,有研科技集团有限公司正高级工程师、硕士研究生导师。2000年7月和2003年6月毕业于中南大学粉末冶金研究院,分别获工学学士学位和工学硕士学位。主要从事粉末冶金材料与零件、金属粉末高效热管理材料等方面的研究、产品开发和产业化。截至目前,已发表论文40余篇,作为副主编出版“十一五”国家重点图书《铜及铜合金粉末与制品》,制定和修订国家或行业标准10项,获得中国有色金属工业科学技术奖4项。wls@gripm.com   
作者简介:  张爵灵,2019年6月毕业于中南大学,获得工学学士学位。现为北京有色金属研究总院硕士研究生。在王林山教授的指导下进行研究。目前主要研究领域为一体化铝基毛细芯。
引用本文:    
张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
ZHANG Jueling, WANG Linshan, ZHENG Fengshi, HU Qiang, WANG Limin. Research and Development of Porous Aluminum Produced by Powder Metallurgy. Materials Reports, 2023, 37(12): 21100151-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100151  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21100151
1 Liu Z M, Yan B. Shanghai Nonferrous Metals, 2012, 33(4), 188 (in Chinese).
刘中梅, 严彪. 上海有色金属, 2012, 33(4), 188.
2 Wang H, Zhou X Y, Long B, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(4), 1034 (in Chinese).
王辉, 周向阳, 龙波, 等. 中国有色金属学报, 2013, 23(4), 1034.
3 Zhang Z, Ding J, Xia X C, et al. Materials & Design, 2015, 88, 359.
4 Sun W C, Wu X J. Metallic Functional Materials, 2003, 10(2), 19 (in Chinese).
孙伟成, 武小娟. 金属功能材料, 2003, 10(2), 19.
5 Zhu X F, Song Y, Xiao Y H, et al. Chinese Journal of Vacuum Science and Technology, 2007, 27(2), 113 (in Chinese).
朱绪飞, 宋晔, 肖迎红, 等. 真空科学与技术学报, 2007, 27(2), 113.
6 Ding Y S, Gao K Y, Wang H D, et al. Rare Metal Materials and Engineering, 2021, 50(6), 2134 (in Chinese).
丁宇升, 高坤元, 王华东, 等. 稀有金属材料与工程, 2021, 50(6), 2134.
7 Yang W. Synthesis and mechanical properties of nanoporous aluminum and its alloys. Ph. D. Thesis, University of Science and Technology of China, China, 2021 (in Chinese).
杨威. 纳米多孔铝及其合金的制备与力学性能研究. 博士学位论文, 中国科学技术大学, 2021.
8 Zheng Z M. Study on fabrication of Al foams by powder metallurgy. Master’s Thesis, Huazhong University of Science and Technology, China, 2004 (in Chinese)
郑兆明. 粉末冶金法制备泡沫铝材料的工艺研究. 硕士学位论文, 华中科技大学, 2004.
9 Li F, Chen H Y. Nonferrous Metals, 2007, 59(1), 32 (in Chinese).
李风, 陈海燕. 有色金属, 2007, 59(1), 32.
10 Ma Y Z, Shi Z, Liu W S, et al. Powder Metallurgy Technology, 2017, 35(3), 216 (in Chinese).
马运柱, 史政, 刘文胜, 等. 粉末冶金技术, 2017, 35(3), 216.
11 An X G. Investigation of the alloying and properties of aluminium base sintered oil-impregnated bearing. Master’s Thesis, Xihua University, China, 2013 (in Chinese).
安旭光. 铝基烧结含油轴承的合金化与性能研究. 硕士学位论文, 西华大学, 2013.
12 Sofianos M V, Chaudharyb A L, Paskeviciusa M, et al. Journal of Alloys and Compounds, 2019, 775, 474.
13 Jia C C, Karima B, Yuan H Y, et al. Powder Metallurgy Technology, 2013, 31(3), 223 (in Chinese).
贾成厂, 卡瑞玛, 袁海英, 等. 粉末冶金技术, 2013, 31(3), 223.
14 Guo Z Q, Ma D H, Yuan X G, et al. Rare Metal Materials and Enginee-ring, 2016, 45(12), 3068 (in Chinese).
郭志强, 马冬辉, 袁晓光, 等. 稀有金属材料与工程, 2016, 45(12), 3068.
15 Qiu T T, Wu M, Du Z Y, et al. Powder Metallurgy, 2020, 63(1), 54.
16 Kondoh K, Kimura A, Watanabe R. Powder Metallurgy, 2001, 44(2), 161.
17 Liu C, Liu Y, Yang Y L, et al. Materials Science and Technology, 2018, 34(11), 1295.
18 Xue L H, Zhang X Q, Pu H Z, et al. Hot Working Technology, 2017, 46(16), 80 (in Chinese).
薛玲华, 张修庆, 浦海洲, 等. 热加工工艺, 2017, 46(16), 80.
19 Chen W P. Study on reaction behavior of in-situ MgAl2O4 spinel formation. Master’s Thesis, Soochow University, China, 2017 (in Chinese).
陈伟鹏. 氧化镁-氧化铝原位合成镁铝尖晶石反应行为的研究. 硕士学位论文, 苏州大学, 2017.
20 Sako E Y, Braulio M A L, Zinngrebe E, et al. Ceramics International, 2012, 38(3), 2243.
21 Kulkarni K N, Luo A A. Journal of Phase Equilibria and Diffusion, 2013, 34(2), 104.
22 He W Y, Xiao Y F, Wu L, et al. Journal of Central South University, 2016, 23(10), 2483.
23 Yasuhiro F, Katsuya W. Transactions of the Japan Institute of Metals, 1972, 13(4), 278.
24 Ye X, Lu Z C, Zeng M Q, et al. The Chinese Journal of Nonferrous Metals, 2014, 24(1), 53.
叶新, 鲁忠臣, 曾美琴, 等. 中国有色金属学报, 2014, 24(1), 53.
25 Yan M, Yu P, Schaffer G B, et al. Acta Materialia, 2010, 58(17), 5667.
26 Zhang J, Lian L X, Liu Y. International Journal of Heat and Mass Transfer, 2020, 152, 119512.
27 Jacob K T, Alcock C B. Journal of the American Ceramic Society, 1975, 58(5), 192.
28 Yan J. Investigation of preparation process for Al-based sintered oil bea-ring in nitrogen environment. Master’s Thesis, Xihua University, China, 2018 (in Chinese).
严峻. 氮气气氛下铝基烧结含油轴承制备工艺研究. 硕士学位论文, 西华大学, 2018.
29 Chen L. Study on preparation and properties of powder metallurgy Al-Cu-Mg-Si material. Master’s Thesis, General Research Institute for Nonferrous Metals, Beijing, China, 2016 (in Chinese).
陈玲. 粉末冶金AlCuMgSi材料的制备与性能研究. 硕士学位论文, 北京有色金属研究总院, 2016.
30 Zhang Q Y, Zhuang H T. Brazing and soldering manual, China Machine Press, China, 2008, pp.73(in Chinese).
张启运, 庄鸿寿. 钎焊手册第2版, 机械工业出版社, 2008, pp.73.
31 Du Z Y, Wu M, Qiu T T, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(11), 2471 (in Chinese).
杜智渊, 吴茂, 邱婷婷, 等. 中国有色金属学报, 2019, 29(11), 2471.
32 Zhao N Q, Zhao W X, Jiang B, et al. Powder Metallurgy Technology, 2006, 24(2), 127 (in Chinese).
赵乃勤, 赵万祥, 姜斌, 等. 粉末冶金技术, 2006, 24(2), 127.
33 Di Y L, Li X, Xiao W, et al. Powder Metallurgy Industry, 2020, 30(1), 18 (in Chinese).
狄玉丽, 李霞, 肖文. 粉末冶金工业, 2020, 30(1), 18.
34 Di Y L, Chen S H. Chinese Rare Earths, 2019, 40(5), 91 (in Chinese).
狄玉丽, 陈善华. 稀土, 2019, 40(5), 91.
35 Pieczonka T, Schubert T, Baunack S, et al. In: 4th International Conference on Science, Technology and Applications of Sintering. Grenoble, 2005, pp.331.
36 Schaffer G B, Hall B J. Metallurgical and Materials Transactions A, 2002, 33(10), 3279.
37 Dang W L, Wang L M, Yang Z L, et al. Materials Science and Engineering of Powder Metallurgy, 2014, 19(6), 921 (in Chinese).
党文龙, 汪礼敏, 杨振亮, 等. 粉末冶金材料科学与工程, 2014, 19(6), 921.
38 An X G, Zha W S, Lei Y, et al. Powder Metallurgy Technology, 2012, 30(2), 108 (in Chinese).
安旭光, 查五生, 雷宇, 等. 粉末冶金技术, 2012, 30(2), 108.
39 Yan J, Zha W S, Zhang G Y. Powder Metallurgy Technology, 2018, 36(3), 211 (in Chinese).
严峻, 査五生, 张桂银. 粉末冶金技术, 2018, 36(3), 211.
40 Wu K X, Wen R, Wang Z, et al. Powder Metallurgy Industry, 2020, 30(6), 85 (in Chinese).
吴开霞, 文然, 王竹, 等. 粉末冶金工业, 2020, 30(6), 85.
41 Feng W, Zhu X D, King Q Q, et al. Aerospace Materials & Technology, 2015, 45(3), 55 (in Chinese).
冯威, 朱晓东, 孔清泉, 等. 宇航材料工艺, 2015, 45(3), 55.
42 Cao L H. Study on the process and characteristic of porous aluminium by powder sintering. Master’s Thesis, Guangdong University of Technology, China, 2005 (in Chinese).
曹黎华. 粉末烧结多孔铝的工艺与性能研究. 硕士学位论文, 广东工业大学, 2005.
43 Zhao Y Y, Sun D X. Scripta Materialia, 2001, 44(1), 105.
44 Muduli B, Ramesh T, Kumar K, et al. Materialia, 2019, 8, 100431.
45 Matijasevic-lux B, Banhart J, Fiechter S, et al. Acta Materialia, 2006, 54(7), 1887.
46 Kennedy A R. Scripta Materialia, 2002, 47(11), 763.
47 Marco H, Dirk L, Jörg W, et al. Journal of Materials Science & Technology, 2010, 26(9), 845.
48 Feng W, Kong Q Q, Zhu X D, et al. Powder Metallurgy Industry, 2016, 26(2), 38 (in Chinese).
冯威, 孔清泉, 朱晓东, 等. 粉末冶金工业, 2016, 26(2), 38.
49 Pan L W, Rao D W, Yang C, et al. Acta Materiae Compositae Sinica, 2020, 37(6), 1370 (in Chinese).
潘利文, 饶德旺, 杨超, 等. 复合材料学报, 2020, 37(6), 1370.
50 Dou Z Y, Jiang L T, Wu G H. In: 2008 National Conference on Composite Materials. Harbin, China, 2008, pp.163.
窦作勇, 姜龙涛, 武高辉. 第十五届全国复合材料学术会议. 哈尔滨, 2008, pp.163.
51 Fan Q Q, Jiang F C, Guo C H, et al. Materials China, 2020, 39(3), 248 (in Chinese).
范琦琪, 姜风春, 果春焕, 等. 中国材料进展, 2020, 39(3), 248.
52 Huang G T, Zuo X Q, Lu J S, et al. The Chinese Journal of Nonferrous Metals, 2012, 22(8), 2340 (in Chinese).
黄国涛, 左孝青, 陆建生, 等. 中国有色金属学报, 2012, 22(8), 2340.
53 Chen X W. World Nonferrous Metals, 2019(23), 1 (in Chinese).
陈学文. 世界有色金属, 2019(23), 1.
54 Mukherjee M, Ramamurty U, Garcia-Moreno F, et al. Acta Materialia, 2010, 58(15), 5031.
55 Zhao Y Y. World Sci-tech R & D, 2003, 25(1), 66 (in Chinese).
赵玉园. 世界科技研究与发展, 2003, 25(1), 66.
56 Liu R P, Zuo X Q, Wu X G, et al. Yunnan Metallurgy, 2003, 32(3), 26 (in Chinese).
刘荣佩, 左孝青, 吴新光, 等. 云南冶金, 2003, 32(3), 26.
57 Wei P, Zheng Z M, Liu L. Powder Metallurgy Technology, 2005, 23(6), 445 (in Chinese).
魏鹏, 郑兆明, 柳林. 粉末冶金技术, 2005, 23(6), 445.
58 Wang Q F, Zhang Y M, Guo X H, et al. Rare Metals and Cemented Carbides, 2014, 42(3), 44 (in Chinese).
王庆福, 张彦敏, 国秀花, 等. 稀有金属与硬质合金, 2014, 42(3), 44.
59 Li A, Liu S F, Wang B J, et al. Powder Metallurgy Technology, 2017, 35(5), 378 (in Chinese).
李安, 刘世锋, 王伯健, 等. 粉末冶金技术, 2017, 35(5), 378.
60 Li Q Z. Preparation of porous aluminum and application in heat pipe. Master’s Thesis, Wuhan University of Technology, China, 2007 (in Chinese).
李其仲. 多孔铝的制备及其在热管中的应用. 硕士学位论文, 武汉理工大学, 2007.
61 Zhang M G, Wang J, Tang S, et al. Journal of Central South University (Science and Technology), 2020, 51(11), 3093 (in Chinese).
张茂贵, 王君, 汤水, 等. 中南大学学报(自然科学版), 2020, 51(11), 3093.
62 Toshifumi T, Masashi M. U. S. patent, US20110038098, 2011.
63 Wang J, Li C, Xu B. Chemical Industry and Engineering, 2009, 26(3), 273 (in Chinese).
王焆, 李晨, 徐博. 化学工业与工程, 2009, 26(3), 273.
64 Jia C C, Fan T. Non-aqueous gel casting for metal powders, Chemical Industry Press, China, 2017, pp.110 (in Chinese).
贾成厂, 范涛. 金属粉末非水基凝胶注模成形, 化学工业出版社, 2017, pp.110.
65 Yuan H Y, Jia C C, Wang C C, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(6), 2018.
66 Zhang X L, Jia C C, Jia X, et al. Journal of Functional Materials, 2010, 41(S3), 401 (in Chinese).
张秀丽, 贾成厂, 贾贤, 等. 功能材料, 2010, 41(S3), 401.
67 Gaillard C, Despois J F, Mortensen A. Materials Science and Enginee-ring A, 2004, 374(1), 250.
68 Zhu Y G. Study on preparation of aluminium foam by powder metallurgy method and its properties. Master’s Thesis, Southeast University, China, 2004 (in Chinese).
朱勇刚. 泡沫铝的粉末冶金制备方法及其相关性能研究. 硕士学位论文, 东南大学, 2004.
69 Zhang H. Preparation and thermal performance study of ultra-thin flat heat pipe. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2019 (in Chinese).
张寒. 超薄平板热管的制备及其传热性能研究. 硕士学位论文, 南京航空航天大学, 2019.
70 Tang Y, Tang H, Wan Z P, et al. Journal of Mechanical Engineering, 2017, 53(20), 131 (in Chinese).
汤勇, 唐恒, 万珍平, 等. 机械工程学报, 2017, 53(20), 131.
71 Chen Y T, Kang S W, Hung Y H, et al. Applied Thermal Engineering, 2013, 51(1), 864.
72 Yang W T. Research for electrodes of alkaline aluminum air batteries. Master’s Thesis, Taiyuan University of Technology, China, 2017 (in Chinese).
杨文通. 碱性铝空气电池电极研究. 硕士学位论文, 太原理工大学, 2017.
73 Han B, Liang G. Rare Metals, 2006, 25(6), 360.
74 Zhang G, Deng B, Liu Q Y, et al. Journal of Energy Storage, 2021, 33, 102167.
75 Egan D R, Ponce de León C, Wood R J K, et al. Journal of Power Sources, 2013, 236, 293.
76 Jiang H, Yu S, Li W, et al. Journal of Power Sources, 2020, 448, 227460.
77 Liu S, Tang S, Zhang X Y, et al. Nano Letters, 2017, 17(9), 5862.
78 Chen X L, Zha W S, Wan H Y. Powder Metallurgy Technology, 2020, 38(1), 74 (in Chinese).
陈秀丽, 查五生, 万海毅. 粉末冶金技术, 2020, 38(1), 74.
[1] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[2] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[3] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[4] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[5] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[6] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[7] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[8] 解传滨, 吴皓然, 王慧聪, 刘景叶, 张修海. Ni-xCr-ySc(x=5,15,25,35;y=0,1)合金的高温抗氧化性能[J]. 材料导报, 2022, 36(23): 21040192-5.
[9] 颉芳霞, 杨豪, 黄家兵, 何雪明, 俞经虎. 粉末冶金Ti-xNb-5Sn骨科合金的摩擦学行为[J]. 材料导报, 2022, 36(21): 21050088-5.
[10] 郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
[11] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[12] 杨海屹, 张莎莎, 姚正军, 刘子利. 电子束重熔对铁基粉末冶金表面耐磨性能的影响[J]. 材料导报, 2022, 36(17): 20100136-5.
[13] 代楠, 张育新, 李凯霖, 刘晓英, 董必钦, 封丽, 贾兴文. 硅藻土在胶凝材料领域的应用进展[J]. 材料导报, 2022, 36(14): 21030125-9.
[14] 王蕊, 王林山, 石韬, 周超, 汪礼敏. 谐波减速器用粉末冶金刚轮材料的摩擦磨损性能研究[J]. 材料导报, 2022, 36(13): 20120260-7.
[15] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed