Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 20080161-7    https://doi.org/10.11896/cldb.20080161
  金属与金属基复合材料 |
粉末致密化过程数值模拟研究现状
郭岩岩1, 历长云1,2,*, 冀国良1, 许磊2, 王亚松1, 米国发1
1 河南理工大学材料科学与工程学院,河南 焦作 454000
2 中国石油大学(北京)克拉玛依校区工学院,新疆 克拉玛依 83400
Research Status of Numerical Simulation of Powder Densification Process
GUO Yanyan1, LI Changyun1,2,*, JI Guoliang1, XU Lei2, WANG Yasong1, MI Guofa1
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China
2 Faculty of Engineering, China University of Petroleum (Beijing) at Karamay, Karamay 83400, Xinjiang, China
下载:  全 文 ( PDF ) ( 3606KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粉末冶金技术具有成本低、能耗低、材料利用率高等优点,在材料制备与加工过程中能在较大的范围内调节工艺,因而在机械、航空、医疗等领域得到了广泛应用。粉末冶金方法主要包括粉末的制取、混合、成形和烧结四个主要步骤,其中成形和烧结是致密化过程,更是制备高性能复合材料的决定性阶段。但传统粉末冶金实验方法不便于观察粉末致密化过程的动态变化,更加难以深入地研究成形和烧结过程中粉末颗粒的重新排布和变形等微观机制。计算机数值模拟技术可以实现粉末压制成形和烧结过程的可视化。因此近几年,国内外的学者们对粉末的压制过程进行了大量数值模拟研究,而对烧结过程的模拟尚且较少。不同的学者因具体的研究对象不同,使用的理论模型和建模方法也各不相同。本文简述了国内外粉末冶金过程数值模拟的理论模型,包括以弹塑性为主的椭圆屈服模型和一致本构模型,注重颗粒特性和流变特性的流变学理论,以及以内时度量反映非线性应变大小的塑性内时理论等,论述了常用的建模方法,包括体现可变形性的有限元法、基于颗粒特性的离散元法和将两者结合的多粒子有限元法。另外,简单阐述了目前粉末热压烧结过程存在的关键问题以及研究现状,以期为粉末冶金的数值模拟研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭岩岩
历长云
冀国良
许磊
王亚松
米国发
关键词:  粉末冶金  致密化  建模方法  多粒子有限元法  热压烧结    
Abstract: Powder metallurgy technology has the advantages of low cost, low energy consumption and high material utilization rate. In addition, process parameters can be adjusted in a larger range during the process of powder metallurgy. Therefore, it has been widely used in machinery, avia-tion, medical treatment and other fields. The manufacturing process can be divided into four steps, including powder preparation, mixing, compaction and sintering, among which the last two are critical for densification and decisive for the performance of composite material. However, it is hard to observe the dynamic densification changes of powders directly for traditional experimental method, which makes it more difficult to investigate the micro-mechanism of particle rearrangement and deformation. Still, computer numerical simulation can reach visualization during the compaction and sintering stages. In recent years, there have been surging researches of numerical simulation on powder compaction, but few on sintering. Theoretical models and modeling methods varies with each research object, from person to person. In this paper, theoretical models of numerical simulation in powder metallurgy are briefly described, involving ellipsoidal yield criterion and unified constitutive model both based on elastoplasticity behavior, rheological theory focusing on particle and rheological properties, endochronic plasticity theory with endochronic mea-surement reflecting the magnitude of nonlinear strain, etc. Common modeling methods including finite element method reflecting deformability, discrete element method based on particle characteristics, and multi-particle finite element method combining the above two, are also discussed. In addition, the chief problems and status of current powder sintering process are clarified. This review is expected to be referable for the numerical simulation of powder metallurgy.
Key words:  powder metallurgy    densification    modeling method    multi-particle finite element method    hot-pressing sintering
收稿日期:  2202-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TF124  
基金资助: 中国石油大学(北京)克拉玛依校区科研启动基金(XQZX20200016;XQZX20200019);克拉玛依市科技计划项目(2020CXRC0014)
通讯作者:  *lucy1226@126.com   
作者简介:  郭岩岩,2018年6月毕业于河南理工大学,获得工学学士学位。现为河南理工大学材料科学与工程学院材料工程专业硕士研究生,在历长云教授的指导下进行研究。目前主要从事粉末冶金冷压、热压和烧结过程的数值模拟研究。历长云,中国石油大学教授、硕士研究生导师、中国机械工业教育委员。2007年7月毕业于哈尔滨工业大学材料科学与工程专业,获得工学博士学位。主要从事合金熔体填充和凝固技术的研究和应用、金属成形过程工艺设计及优化、先进金属基复合材料和多孔材料的制备、粉末压制过程的数值模拟等方面的研究。发表学术论文60余篇,出版教材、著作4部。授权国家发明专利15项,主持国家自然科学基金、河南省自然科学基金、河南省产学研项目、新疆维吾尔高层次人才项目、克拉玛依市科技计划等项目多项。
引用本文:    
郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
GUO Yanyan, LI Changyun, JI Guoliang, XU Lei, WANG Yasong, MI Guofa. Research Status of Numerical Simulation of Powder Densification Process. Materials Reports, 2022, 36(18): 20080161-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080161  或          http://www.mater-rep.com/CN/Y2022/V36/I18/20080161
1 Nan H J, Wu Y J. In: Conference Record of the 2009 Sino-US International Symposium on Filtration and Separation Technology. Shanghai, China, 2009, pp. 301(in Chinese).
南海娟, 吴引江. 中美国际过滤与分离技术研讨会. 上海, 2009, pp. 301.
2 Chen Z H, Chen D. Principles of modern powder metallurgy, Chemical Industry Press, China, 2013(in Chinese).
陈振华, 陈鼎. 现代粉末冶金原理, 化学工业出版社, 2013.
3 Kuhn H A, Downey C L. International Journal of Powder Metallurgy (Princeton, New Jersey), 1971, 7(1), 15.
4 Green R J. International Journal of Mechanical Sciences, 1972, 14(4), 215.
5 Shima S, Oyane M. International Journal of Mechanical Sciences, 1976, 18(6), 285.
6 Gurson A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction. Ph.D. Thesis, Brown University, USA, 1975.
7 Doraivelu S M, Gegel H L, Gunasekera J S, et al. International Journal of Mechanical Sciences, 1984, 26(9-10), 527.
8 Oyane M, Shima S, Kono Y, et al. Bulletin of the JSME, 1973, 16(99), 1254.
9 Ren X P, Wang E D, Huo W C. Powder Metallurgy Technology, 1992, 10(1), 8(in Chinese).
任学平, 王尔德, 霍文灿. 粉末冶金技术, 1992, 10 (1), 8.
10 Wang J, Li C X, Ruan X Y. Mechanical Science and Technology for Aerospace Engineering, 2000, 19(2), 275(in Chinese).
汪俊, 李从心, 阮雪榆. 机械科学与技术, 2000, 19(2), 275.
11 Lin Q Q, Yan M, Yang F, et al. Material Reports B: Research Papers, 2015, 29(11),145(in Chinese).
林启权, 颜明, 杨辅, 等. 材料导报:研究篇, 2015, 29(11),145.
12 Park J J. International Journal of Mechanical Sciences, 1995, 3(7),709.
13 Hua L, Qin X P, Mao H J, et al. Journal of Materials Processing Technology, 2003, 180(1),174.
14 Li Y Y, Chen P Q, Xia W, et al. Transactions of Nonferrous Metals Society of China, 2006, 16(3),507.
15 Jeong M S, Yoo J H, Rhim S H, et al. Finite Elements in Analysis & Design, 2012, 53, 56.
16 Reiterer M W, Ewsuk K G, Argüello J G.Journal of the American Cera-mic Society, 2010, 89(6),1930.
17 Yook Y J, Im J I.Journal of the Korean Ceramic Society, 2007, 44(4), 235.
18 Valanis K C.Archives of Mechanics, 1971, 23, 517.
19 Zhang X Y. Advances in Mechanics, 1989(4), 485(in Chinese).
张学言. 力学进展,1989(4), 485.
20 Fan J H, Wang J G. Theoretical and Applied Mechanics, 1989(S1), 6(in Chinese).
范镜泓, 王建国. 力学学报, 1989(S1), 56.
21 Huang P Y. Journal of Central South University (Science and Technology), 1986(S1), 47(in Chinese).
黄培云. 中南矿冶学院学报, 1986(S1), 47.
22 He A A, Huang P Y, Lyu H B. Journal of Central South University (Science and Technology), 1989(1), 72(in Chinese).
贺安安, 黄培云, 吕海波. 中南矿冶学院学报, 1989(1), 72.
23 Shen L J, Dong R A, Yuan Y F. Journal of Shaanxi University of Science, 1989(3), 107(in Chinese).
沈良骥, 董润安, 袁耀锋. 陕西科技大学学报, 1989(3), 107.
24 Drucker D C, Prager W. Quarterly of Applied Mathematics, 1952, 10(2), 157.
25 Drucker D C, Gibson R E, Henkel D J, et al. Transactions of the American Society of Civil Engineers, 1955, 122(9), 338.
26 Roscoe K H. Geotechnique, 1957, 122, 338.
27 Roscoe K H, Bualand J B. Engineering Plasticity(Papers for a Conference Held in Cambridge), 1970, 7(2), 535.
28 Roscoe K H, Schofield A N, Thurairajah A. Geotchnique, 1963, 13(3), 211.
29 Roscoe K H, Schofield A N, Wroth C P. Geotechnique, 1958, 8(1), 22.
30 Zienkiewicz O C. Applied Mechanics Reviews, 1970, 23(23), 249.
31 Zienkiewicz O C, Cheung Y K. The finite element method in structural and continuum mechanics, Mc-Graw Hill, UK, 1967.
32 Yan H, He Y. Journal of Jilin College of Finance and Taxation, 2008(3), 88(in Chinese).
颜辉, 何昀.吉林工商学院学报, 2008(3), 88.
33 Yang Y, Tang S G. China Powder Science and Technology, 2006(5), 38(in Chinese).
杨洋, 唐寿高.中国粉体技术, 2006(5), 38.
34 Xu Y, Sun Q C, Zhang L, et al. Advances in Mechanics, 2003(2), 251(in Chinese).
徐泳, 孙其诚, 张凌, 等.力学进展, 2003(2), 251.
35 Liu K X, Gao L T. Advances in Mechanics, 2003(4), 53(in Chinese).
刘凯欣, 高凌天.力学进展, 2003(4), 53.
36 Martin S, Guessasma M, Léchelle J, et al. Computational Materials Science, 2014, 84, 31.
37 Han P, An X Z, Wang D F, et al. Journal of Alloys and Compounds, 2018, 741(15), 473.
38 Han P, An X Z, Zhang Y X, et al. Powder Technology, 2017, 314(1), 69.
39 Zou Y, An X Z, Jia Q, et al. Powder Technology, 2019, 354, 854.
40 Feng Y B, Mei D Q, Wang Y C. Physics Chemistry of Solids, 2019, 134, 35.
41 Loidolt P, Ulz M H, Johannes K. Powder Technology, 2018, 336, 426.
42 Jia Q, An X Z, Zhao H Y, et al. Journal of Alloys and Compounds, 2018, 750(25), 341.
43 Peng K F, Pan H, Zheng Z J, et al. Powder Technology, 2021, 382(4), 478.
44 Nosewica S, Rojek J, Pietrzak K, et al. Powder Technology, 2013, 246, 157.
45 Nosewica S, Rojek J, Chmielewski M, et al. Granular Matter, 2017, 19(1), 16.
46 Liu Z L, Chang Q, Li K J, et al. Powder Technology, 2020, 367, 97.
47 Nandy J, Yedla N, Gupta P, et al. Materials Chemistry and Physics, 2019, 236, 121803.
48 Termuhlen R, Chatzistavrou X, Nicholas J D, et al. Computational Materials Science, 2021, 186, 109963.
49 Hötzer J, Seiz M, Kellner M, et al. Acta Materialia, 2019, 164, 184.
50 Choudhuri D, Blake L.Journal of Materials Science, 2021, 56, 7474.
51 Rasp T, Kraft T, Riedel H. Scripta Materialia, 2013, 69(11-12), 805.
52 Rojek J, Zubelewicz A, Madan N, et al. International Journal for Numerical Methods in Engineering, 2018, 114(8), 828.
53 Rojek J, Zubelewicz A, Madan N, et al. AIP Conference Proceedings, 2018, 121, 030009.
54 Rojek J, Nosewicz S, Chmielewski S. International Journal for Multiscale Computational Engineering, 2017, 15(4), 323.
55 Olmos L. Etude du frittage de poudres par microtomographie in situ et modélisation discrète. Ph.D. Thesis, Institut polytechnique de Grenoble, France, 2009.
56 Yang D N, Jiang H P, Liu Y, et al. Procedia Manufacturing, 2019, 37, 529.
57 Olmos L, Martin C L, Bouvard D. Powder Technology, 2009, 190(1-2), 134.
58 Ni Y, Liu K, Wang J, et al. Ceramics International, 2021, 47(7), 8769.
59 Iacobellis V, Radhi A, Behdinan K.Composite Structures, 2019, 229(1), 111373.
[1] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[2] 李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
[3] 杨海屹, 张莎莎, 姚正军, 刘子利. 电子束重熔对铁基粉末冶金表面耐磨性能的影响[J]. 材料导报, 2022, 36(17): 20100136-5.
[4] 王蕊, 王林山, 石韬, 周超, 汪礼敏. 谐波减速器用粉末冶金刚轮材料的摩擦磨损性能研究[J]. 材料导报, 2022, 36(13): 20120260-7.
[5] 安宁, 吴浩恺, 朱敏, 郑月红, 占发奇, 喇培清. 盐助燃烧合成法大规模制备超细LaB6粉体及其烧结性能[J]. 材料导报, 2022, 36(11): 21010240-7.
[6] 李东宇, 李小强, 李京懋, 屈盛官, 徐各清. 烧结工艺对铜铁基含油轴承组织与性能的影响[J]. 材料导报, 2021, 35(8): 8157-8163.
[7] 李健, 左婷婷, 薛江丽, 茹亚东, 赵兴科, 高召顺, 韩立, 肖立业. 热压烧结及轧制工艺对CuCr/CNTs复合材料组织与性能的优化[J]. 材料导报, 2021, 35(2): 2078-2085.
[8] 伍芷凝, 姚青, 刘国盛, 涂广俊, 周振宇, 丁明伟, 徐辉. 电弧微爆制备球形铜粉技术的工艺特性[J]. 材料导报, 2020, 34(Z2): 386-389.
[9] 林启权, 周行, 董文正, 钦椿凯. CoO和Cr2O3复合掺杂对金属陶瓷的致密化及抗高温氧化性的影响[J]. 材料导报, 2020, 34(6): 6044-6048.
[10] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[11] 张强, 蔡璋文, 董兰静, 柏跃磊, 朱春城. Ti2AlC陶瓷弥散增强Al基复合材料的制备及剪切性能[J]. 材料导报, 2020, 34(20): 20086-20090.
[12] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[13] 刘玉玲, 张修庆. Fe-Mn合金在生物医学方面的应用及前景[J]. 材料导报, 2019, 33(Z2): 331-335.
[14] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[15] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed