Research Status of Numerical Simulation of Powder Densification Process
GUO Yanyan1, LI Changyun1,2,*, JI Guoliang1, XU Lei2, WANG Yasong1, MI Guofa1
1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China 2 Faculty of Engineering, China University of Petroleum (Beijing) at Karamay, Karamay 83400, Xinjiang, China
Abstract: Powder metallurgy technology has the advantages of low cost, low energy consumption and high material utilization rate. In addition, process parameters can be adjusted in a larger range during the process of powder metallurgy. Therefore, it has been widely used in machinery, avia-tion, medical treatment and other fields. The manufacturing process can be divided into four steps, including powder preparation, mixing, compaction and sintering, among which the last two are critical for densification and decisive for the performance of composite material. However, it is hard to observe the dynamic densification changes of powders directly for traditional experimental method, which makes it more difficult to investigate the micro-mechanism of particle rearrangement and deformation. Still, computer numerical simulation can reach visualization during the compaction and sintering stages. In recent years, there have been surging researches of numerical simulation on powder compaction, but few on sintering. Theoretical models and modeling methods varies with each research object, from person to person. In this paper, theoretical models of numerical simulation in powder metallurgy are briefly described, involving ellipsoidal yield criterion and unified constitutive model both based on elastoplasticity behavior, rheological theory focusing on particle and rheological properties, endochronic plasticity theory with endochronic mea-surement reflecting the magnitude of nonlinear strain, etc. Common modeling methods including finite element method reflecting deformability, discrete element method based on particle characteristics, and multi-particle finite element method combining the above two, are also discussed. In addition, the chief problems and status of current powder sintering process are clarified. This review is expected to be referable for the numerical simulation of powder metallurgy.
郭岩岩, 历长云, 冀国良, 许磊, 王亚松, 米国发. 粉末致密化过程数值模拟研究现状[J]. 材料导报, 2022, 36(18): 20080161-7.
GUO Yanyan, LI Changyun, JI Guoliang, XU Lei, WANG Yasong, MI Guofa. Research Status of Numerical Simulation of Powder Densification Process. Materials Reports, 2022, 36(18): 20080161-7.
1 Nan H J, Wu Y J. In: Conference Record of the 2009 Sino-US International Symposium on Filtration and Separation Technology. Shanghai, China, 2009, pp. 301(in Chinese). 南海娟, 吴引江. 中美国际过滤与分离技术研讨会. 上海, 2009, pp. 301. 2 Chen Z H, Chen D. Principles of modern powder metallurgy, Chemical Industry Press, China, 2013(in Chinese). 陈振华, 陈鼎. 现代粉末冶金原理, 化学工业出版社, 2013. 3 Kuhn H A, Downey C L. International Journal of Powder Metallurgy (Princeton, New Jersey), 1971, 7(1), 15. 4 Green R J. International Journal of Mechanical Sciences, 1972, 14(4), 215. 5 Shima S, Oyane M. International Journal of Mechanical Sciences, 1976, 18(6), 285. 6 Gurson A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interaction. Ph.D. Thesis, Brown University, USA, 1975. 7 Doraivelu S M, Gegel H L, Gunasekera J S, et al. International Journal of Mechanical Sciences, 1984, 26(9-10), 527. 8 Oyane M, Shima S, Kono Y, et al. Bulletin of the JSME, 1973, 16(99), 1254. 9 Ren X P, Wang E D, Huo W C. Powder Metallurgy Technology, 1992, 10(1), 8(in Chinese). 任学平, 王尔德, 霍文灿. 粉末冶金技术, 1992, 10 (1), 8. 10 Wang J, Li C X, Ruan X Y. Mechanical Science and Technology for Aerospace Engineering, 2000, 19(2), 275(in Chinese). 汪俊, 李从心, 阮雪榆. 机械科学与技术, 2000, 19(2), 275. 11 Lin Q Q, Yan M, Yang F, et al. Material Reports B: Research Papers, 2015, 29(11),145(in Chinese). 林启权, 颜明, 杨辅, 等. 材料导报:研究篇, 2015, 29(11),145. 12 Park J J. International Journal of Mechanical Sciences, 1995, 3(7),709. 13 Hua L, Qin X P, Mao H J, et al. Journal of Materials Processing Technology, 2003, 180(1),174. 14 Li Y Y, Chen P Q, Xia W, et al. Transactions of Nonferrous Metals Society of China, 2006, 16(3),507. 15 Jeong M S, Yoo J H, Rhim S H, et al. Finite Elements in Analysis & Design, 2012, 53, 56. 16 Reiterer M W, Ewsuk K G, Argüello J G.Journal of the American Cera-mic Society, 2010, 89(6),1930. 17 Yook Y J, Im J I.Journal of the Korean Ceramic Society, 2007, 44(4), 235. 18 Valanis K C.Archives of Mechanics, 1971, 23, 517. 19 Zhang X Y. Advances in Mechanics, 1989(4), 485(in Chinese). 张学言. 力学进展,1989(4), 485. 20 Fan J H, Wang J G. Theoretical and Applied Mechanics, 1989(S1), 6(in Chinese). 范镜泓, 王建国. 力学学报, 1989(S1), 56. 21 Huang P Y. Journal of Central South University (Science and Technology), 1986(S1), 47(in Chinese). 黄培云. 中南矿冶学院学报, 1986(S1), 47. 22 He A A, Huang P Y, Lyu H B. Journal of Central South University (Science and Technology), 1989(1), 72(in Chinese). 贺安安, 黄培云, 吕海波. 中南矿冶学院学报, 1989(1), 72. 23 Shen L J, Dong R A, Yuan Y F. Journal of Shaanxi University of Science, 1989(3), 107(in Chinese). 沈良骥, 董润安, 袁耀锋. 陕西科技大学学报, 1989(3), 107. 24 Drucker D C, Prager W. Quarterly of Applied Mathematics, 1952, 10(2), 157. 25 Drucker D C, Gibson R E, Henkel D J, et al. Transactions of the American Society of Civil Engineers, 1955, 122(9), 338. 26 Roscoe K H. Geotechnique, 1957, 122, 338. 27 Roscoe K H, Bualand J B. Engineering Plasticity(Papers for a Conference Held in Cambridge), 1970, 7(2), 535. 28 Roscoe K H, Schofield A N, Thurairajah A. Geotchnique, 1963, 13(3), 211. 29 Roscoe K H, Schofield A N, Wroth C P. Geotechnique, 1958, 8(1), 22. 30 Zienkiewicz O C. Applied Mechanics Reviews, 1970, 23(23), 249. 31 Zienkiewicz O C, Cheung Y K. The finite element method in structural and continuum mechanics, Mc-Graw Hill, UK, 1967. 32 Yan H, He Y. Journal of Jilin College of Finance and Taxation, 2008(3), 88(in Chinese). 颜辉, 何昀.吉林工商学院学报, 2008(3), 88. 33 Yang Y, Tang S G. China Powder Science and Technology, 2006(5), 38(in Chinese). 杨洋, 唐寿高.中国粉体技术, 2006(5), 38. 34 Xu Y, Sun Q C, Zhang L, et al. Advances in Mechanics, 2003(2), 251(in Chinese). 徐泳, 孙其诚, 张凌, 等.力学进展, 2003(2), 251. 35 Liu K X, Gao L T. Advances in Mechanics, 2003(4), 53(in Chinese). 刘凯欣, 高凌天.力学进展, 2003(4), 53. 36 Martin S, Guessasma M, Léchelle J, et al. Computational Materials Science, 2014, 84, 31. 37 Han P, An X Z, Wang D F, et al. Journal of Alloys and Compounds, 2018, 741(15), 473. 38 Han P, An X Z, Zhang Y X, et al. Powder Technology, 2017, 314(1), 69. 39 Zou Y, An X Z, Jia Q, et al. Powder Technology, 2019, 354, 854. 40 Feng Y B, Mei D Q, Wang Y C. Physics Chemistry of Solids, 2019, 134, 35. 41 Loidolt P, Ulz M H, Johannes K. Powder Technology, 2018, 336, 426. 42 Jia Q, An X Z, Zhao H Y, et al. Journal of Alloys and Compounds, 2018, 750(25), 341. 43 Peng K F, Pan H, Zheng Z J, et al. Powder Technology, 2021, 382(4), 478. 44 Nosewica S, Rojek J, Pietrzak K, et al. Powder Technology, 2013, 246, 157. 45 Nosewica S, Rojek J, Chmielewski M, et al. Granular Matter, 2017, 19(1), 16. 46 Liu Z L, Chang Q, Li K J, et al. Powder Technology, 2020, 367, 97. 47 Nandy J, Yedla N, Gupta P, et al. Materials Chemistry and Physics, 2019, 236, 121803. 48 Termuhlen R, Chatzistavrou X, Nicholas J D, et al. Computational Materials Science, 2021, 186, 109963. 49 Hötzer J, Seiz M, Kellner M, et al. Acta Materialia, 2019, 164, 184. 50 Choudhuri D, Blake L.Journal of Materials Science, 2021, 56, 7474. 51 Rasp T, Kraft T, Riedel H. Scripta Materialia, 2013, 69(11-12), 805. 52 Rojek J, Zubelewicz A, Madan N, et al. International Journal for Numerical Methods in Engineering, 2018, 114(8), 828. 53 Rojek J, Zubelewicz A, Madan N, et al. AIP Conference Proceedings, 2018, 121, 030009. 54 Rojek J, Nosewicz S, Chmielewski S. International Journal for Multiscale Computational Engineering, 2017, 15(4), 323. 55 Olmos L. Etude du frittage de poudres par microtomographie in situ et modélisation discrète. Ph.D. Thesis, Institut polytechnique de Grenoble, France, 2009. 56 Yang D N, Jiang H P, Liu Y, et al. Procedia Manufacturing, 2019, 37, 529. 57 Olmos L, Martin C L, Bouvard D. Powder Technology, 2009, 190(1-2), 134. 58 Ni Y, Liu K, Wang J, et al. Ceramics International, 2021, 47(7), 8769. 59 Iacobellis V, Radhi A, Behdinan K.Composite Structures, 2019, 229(1), 111373.