Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1376-1382    https://doi.org/10.11896/cldb.17100199
  金属与金属基复合材料 |
用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能
吴靓1,2,3, 汤智1,2,3, 杨格1,2,3, 刘艳1,2,3, 许艳飞1,2,3, 钱锦文1,2,3, 肖逸锋1,2,3, 贺跃辉4
1 湘潭大学机械工程学院,湘潭 411105
2 湘潭大学焊接机器人及应用技术湖南省重点实验室,湘潭 411105
3 湘潭大学复杂轨迹加工工艺及装备教育部工程研究中心,湘潭 411105
4 中南大学粉末冶金国家重点实验室,长沙 410083
Fabrication and Performance of Pore-size-graded Porous Ni-Cr-Fe Alloys Serving as Filtration Membrane
WU Liang1,2,3, TANG Zhi1,2,3, YANG Ge 1,2,3, LIU Yan1,2,3, XU Yanfei1,2,3, QIAN Jinwen1,2,3, XIAO Yifeng1,2,3, HE Yuehui4
1 School of Mechanical Engineering, Xiangtan University, Xiangtan 411105
2 Key Laboratory of Welding Robot and Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105
3 Engineering Research Center of Complex Trajectory Processing Technology and Equipment of Ministry of Education, Xiangtan University, Xiangtan 411105
4 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 5321KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用元素粉末反应合成法, 利用固相偏扩散的原理进行固相烧结制备Ni-Cr-Fe多孔材料支撑体,再利用人工刷涂的方法将同配比且较细的Ni、Cr、Fe元素粉末悬浮浆料刷涂于多孔支撑体表面,经过真空烧结,制备得到梯度孔径Ni-Cr-Fe多孔材料。通过XRD、SEM、能谱等测试手段表征烧结后的梯度孔径Ni-Cr-Fe多孔材料的物相及孔结构性能。结果表明,同质的梯度孔径Ni-Cr-Fe多孔材料膜层完整,结合强度较好,以冶金桥接的方式结合。随着膜层厚度的增加,透气度将减小,当过渡层的厚度为80 μm,表面膜层厚度为30 μm时,最大孔径为6 μm,透气度为936 m3·m-2·h-1·kPa-1,透气度下降22.64%。在膜层等厚且过滤精度达到要求时,二阶梯度孔径Ni-Cr-Fe多孔材料透气度的下降率比一阶梯度孔径Ni-Cr-Fe多孔材料透气度的下降率小。过渡膜层起到了非常关键的作用,实现了在较高过滤精度的基础上具有较大的过滤通量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴靓
汤智
杨格
刘艳
许艳飞
钱锦文
肖逸锋
贺跃辉
关键词:  Ni-Cr-Fe多孔材料  梯度孔径多孔材料  粉末冶金    
Abstract: The aim of this work is to develop a porous Ni-Cr-Fe alloy with pore size gradient and application potential as filtration membrane. The porous Ni-Cr-Fe alloys supports were prepared by reactive powder synthesis method, whose principle is partial diffusion during the solid phase sintering process. And then the mixture of ultrafine Ni, Cr, Fe powders were coated on the surface of Ni-Cr-Fe alloys supports by artificial brushing, which helped to form fine Ni-Cr-Fe alloys dense layers. Subsequently the homogeneous porous Ni-Cr-Fe alloys with pore size gradient structures were achieved through a vacuum sintering process. The morphology of surface and cross-section of the pore size gradient structures were cha-racterized by SEM. The phases of the alloys were characterized by XRD and EDX. The results confirmed that the prepared homogeneous pore-size-graded porous Ni-Cr-Fe alloys membrane is complete, without obvious defects and well combined with the support in a metallurgical bridging manner. With the increase of the membrane thickness, the air permeability will decrease. When the thickness of transition layer is 80 μm and the thickness of surface film is 30 μm, the maximum pore diameter is 6 μm, the air permeability is 936 m3·m-2·h-1·kPa-1, the air permeability decreases by 22.64%. In the same thickness of the membrane, when the filtration precision is required, the decline rate of the air permeability of second order pore-size-graded porous Ni-Cr-Fe alloys is smaller than first order pore-size-graded porous Ni-Cr-Fe alloys. The intermediate layers play a key role in pore-size-graded porous structures. The pore-size-gradient structure of the membrane truly achieves simultaneously both high filtering accuracy and larger flux.
Key words:  porous Ni-Cr-Fe alloys    asymmetric porous material    powder metallurgy
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51271158;51401175;51504213);湖南省重点研发计划项目(2015WK3021)
作者简介:  吴靓,2014年获得材料学博士学位,湘潭大学机械工程学院副教授。主要研究粉末冶金技术,多孔材料的制备及应用。在国内外期刊发表论文30余篇。肖逸锋,湘潭大学机械工程学院教授。2008年毕业于中南大学,获得材料学博士学位。主要研究粉末冶金新材料、特种焊接材料与工艺和表面改性技术。在国内外期刊上发表学术论文50余篇,申报发明专利40余项。Email: xiaoyifeng@xtu.edu.cn
引用本文:    
吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
WU Liang, TANG Zhi, YANG Ge, LIU Yan, XU Yanfei, QIAN Jinwen, XIAO Yifeng, HE Yuehui. Fabrication and Performance of Pore-size-graded Porous Ni-Cr-Fe Alloys Serving as Filtration Membrane. Materials Reports, 2019, 33(8): 1376-1382.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17100199  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1376
1 Qin Z J, Liu C Z, Wang Z, et al. The Chinese Journal of Nonferrous Metals, 2016, 26(1),50(in Chinese).
秦子珺,刘琛仄,王子,等.中国有色金属学报,2016, 26(1),50.
2 Wu L, He Y H, Lei T, et al. Materials Chemistry and Physics, 2013, 141, 553.
3 Letant S E, Hart B R, Van Buuren A W, et al. Nature Materials, 2003, 2(6),391.
4 Hernandez N, Sanchez-Herencia A J, Moreno R. Acta Materialia, 2005, 53(4),919.
5 Yang H S, Zhu Y C, Li M Q, et al. Journal of Jiamusi University, 2005, 23(1), 88(in Chinese).
杨涵崧,朱永长,李慕勤,等.佳木斯大学学报, 2005, 23(1),88.
6 Baxter R I, Rawling R D, Iwashita N, et al. Carbon, 2000, 38,441.
7 Ersahin M E, Ozgum H, Dereli R K, et al. Bioresource Technology, 2012, 122,196.
8 Garsuch A, Sattler R R, Witt S, et al. Microporous and Mesoporous Materials, 2006, 89,164.
9 Rebuk R B. Advanced Materials and Process, 2000, 157(2), 37.
10 Peng Q, Hou J, Sakaguchi K, et al. Electrochimica Acta, 2011, 56(24),8375.
11 Li J, Ma M, Lu Y H, et al.Wear, 2015, 346-347, 15.
12 Kim H, Macdonald D D. Corrosion Science, 2010, 52(4), 1139.
13 Terachi T, Totsuka N,Yamada T, et al. Journal of Nuclear Science and Technology, 2003, 40(7), 509.
14 Figueiredo C, Alvial G M, Schvartzman M M A M , et al. Energy Materials: Materials Science and Engineering for Energy Systems, 2008, 3, 126.
15 Zhou Z H, Gao H Y, He Y H. Materials Science and Engineering of Powder Metallurgy, 2013, 18(1), 144(in Chinese).
周志华, 高海燕, 贺跃辉.粉末冶金材料科学与工程,2013,18(1),144.
16 Zhu H, Dong J X , Zhang M C, et al. Journal of University of Science and Technology Beijing, 2002, 24(5),511(in Chinese).
朱红, 董建新, 张麦仓, 等.北京科技大学学报,2002, 24(5),511.
17 Xiao Y F, Liu Y, Tang Z, et al. RSC Advances, 2016, 6(56), 51096.
18 Tan P, Tang H P, Wang J Y, et al. Rare Metal Materials and Enginee-ring, 2006(S2),433(in Chinese).
谈萍,汤慧萍,王建永,等.稀有金属材料与工程,2006(S2),433.
19 Huang G T, Zuo X Q,Sun Y L, et al. Materials Review, 2010, 24(z2),448(in Chinese).
黄国涛,左孝青,孙彦琳,等.材料导报,2010,24(专辑16),448.
20 Sun T, Xi Z P, Tang H P, et al. Rare Metal Materials and Enginee-ring, 2008(a04),509(in Chinese).
孙涛, 奚正平, 汤慧萍, 等.稀有金属材料与工程, 2008(a04),509.
21 Wang H, Tang H P, Xiang C S, et al. Rare Metal Materials and Engineering, 2014, 43(11),2796(in Chinese).
王辉, 汤慧萍, 向长淑,等.稀有金属材料与工程, 2014, 43(11),2796.
22 Xiao H N, Guo W M, Gao P Z. Chinese Science Bulletin, 2015, 60(3), 267(in Chinese).
肖汉宁, 郭文明, 高朋召.科学通报,2015,60(3),267.
23 Yuan Z F, Wu Y, Wu H, et al. Nonferrous Metals Science and Enginee-ring, 2014(3),1(in Chinese).
袁章福, 吴燕, 吴湖, 等.有色金属科学与工程, 2014(3),1.
24 Xu C, Hong H B, Jin J. China Ceramics,2014(9),54(in Chinese).
徐超,洪海波,金江.中国陶瓷, 2014(9),54.
[1] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[2] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[3] 袁振军, 贺甜甜, 杜三明, 张永振. 硼铁含量对铜基粉末冶金制动材料性能的影响[J]. 材料导报, 2018, 32(18): 3223-3229.
[4] 郝刚领,许巧平. 创新构型泡沫TiAl的制备及其力学响应特征[J]. 《材料导报》期刊社, 2018, 32(10): 1659-1662.
[5] 张春芝, 孔令亮, 李辉平. 镍添加对粉末冶金Al94.5Cu4Mg1.5耐腐蚀性能的提升作用*[J]. 《材料导报》期刊社, 2017, 31(20): 39-43.
[6] 刘彦强, 樊建中, 马自力, 杨必成, 聂俊辉, 魏少华, 郝心想, 邓凡. 泡沫铝三明治板的研究与应用进展*[J]. 《材料导报》期刊社, 2017, 31(15): 101-107.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed