Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1659-1662    https://doi.org/10.11896/j.issn.1005-023X.2018.10.017
  材料研究 |
创新构型泡沫TiAl的制备及其力学响应特征
郝刚领,许巧平
延安大学材料物理研究所,延安 716000
Preparation and Mechanical Response Characteristics of TiAl Foam with Innovative Configuration
HAO Gangling, XU Qiaoping
Institute of Material Physics, Yan’an University, Yan’an 716000
下载:  全 文 ( PDF ) ( 3510KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 兼有金属和陶瓷特性的TiAl金属间化合物泡沫材料具有明确的性能优势和目标需求,在高温隔热材料、酸碱环境下的过滤材料、催化剂载体等领域有广阔的应用前景。本文首先采用Ti/Al元素粉末反应烧结制备了TiAl合金粉体,然后采用脱溶-烧结工艺制备了孔隙分布均匀、通孔型单孔结构的泡沫TiAl,该工艺可实现孔隙率、孔径、孔形等可控。准静态压缩测试表明,TiAl属于脆性泡沫材料,超过弹性区到达上屈服点时,材料瞬时坍塌失效。同时,随孔隙率的增大,TiAl的屈服强度、杨氏模量和弹性区域均减小,屈服强度与孔隙率的响应关系满足Gibson-Ashby模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝刚领
许巧平
关键词:  泡沫TiAl  粉末冶金  力学响应特征    
Abstract: There are incontrovertible performance advantage and objective demand for TiAl intermetallic compound foam materials with metal and ceramic properties, which has a wide application prospect in the fields of high temperature insulating material, filter material in acid-base environment, catalyst carrier etc. The TiAl alloy powder in the present study was firstly fabricated using the Ti/Al elemental power sintering. Then the open pore TiAl foam with single structure was prepared using the dissolution-sintering method. The TiAl foam has a well uniform pore distribution and the porosity, pore size and pore shape can be tailored according to the desirable demand. The quasi-static compression was carried out to characterize the mechanical properties of the TiAl foam. It was found that the TiAl foam belongs to typical brittle foam material. However, the TiAl will completely collapsed and become invalid once the compressive stress exceeds the upper yield strength after linear elastic region. Moreover, the yield strength, Young’s modular, elastic region of the TiAl foam decrease with increasing the porosity. The relationship between yield strength and porosity coincides well with the Gibson-Ashby model.
Key words:  TiAl foam    powder metallurgy    mechanical response characteristics
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51301150;51661032);新金属材料国家重点实验室开放基金(2012-Z01);陕西省青年科技新星人才专项(2013KJXX-11);陕西省教育厅自然科学专项(16JK1854);陕西省延安市工业攻关计划(2015KG-02;2016KG-02)
通讯作者:  郝刚领:男,1979年生,博士,教授,主要研究方向为新型超轻泡沫金属材料的制备/性能及其应用 Tel:0911-2332045 E-mail:glhao@issp.ac.cn   
引用本文:    
郝刚领,许巧平. 创新构型泡沫TiAl的制备及其力学响应特征[J]. 《材料导报》期刊社, 2018, 32(10): 1659-1662.
HAO Gangling, XU Qiaoping. Preparation and Mechanical Response Characteristics of TiAl Foam with Innovative Configuration. Materials Reports, 2018, 32(10): 1659-1662.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.017  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1659
1 何德坪.超轻多孔金属[M].北京:科学出版社,2008.
2 Li B Y, Rong L J, Li Y Y, et al. Synthesis of porous Ni-Ti shape-memory alloys by self-propagating high-temperature synthesis: Reaction mechanism and anisotropy in pore structure [J]. Acta Materialia,2000,48(15):3895.
3 黄伯云.钛铝基金属间化合物 [M].长沙:中南工业大学出版社,1998.
4 Clemens H, Kestler H. Processing and applications of intermetallic γ-TiAl-based alloys [J]. Advanced Engineering Materials,2000,2(9):551.
5 Jiang Y, He Y H, Huang B Y, et al. Progress in research on Ti-Al intermetallic compound porous material [J]. Materials China,2010,29(3):18(in Chinese).
江垚,何跃辉,黄伯云,等. Ti-Al金属间化合物多孔材料的研究进展 [J].中国材料进展,2010,29(3):18.
6 He Y H, Jiang Y, Xu N P, et al. Fabrication of Ti-Al micro/nanometer-sized porous alloys through the Kirkendall effect [J]. Advanced Materials,2007,19(16):2102.
7 Liang Y F, Yang F, Zhang L Q, et al. Reaction behavior and pore formation mechanism of TiAl-Nb porous alloys prepared by elemental powder metallurgy [J]. Intermetallics,2014,44:1.
8 Ide T, Tane M, Nakajima H. Compressive deformation behavior of porous γ-TiAl with directional pores [J]. Materials Science and Engineering A,2009,508(1-2):220.
9 Yang S H, Kim W Y, Kim M S. Fabrication of unidirectional porous TiAl-Mn intermetallic compounds by reactive sintering using extruded powder mixtures [J]. Intermetallics,2003,11(8):849.
10 Zhang W, Liu Y, Wang H, et al. Preparation and properties of porous Ti-Al alloys by reactive infiltration [J]. Powder Metallurgy,2011,54(3):253.
11 Mohammad A, Alahmari A, Moiduddin K, et al. Porous γ-TiAl structures fabricated by electron beam melting process [J]. Metals,2016,6(1):25.
12 Zhao X K, Sun H B, Lan L, et al. Pore structures of high-porosity NiTi alloys made from elemental powders with NaCl temporary space-holders [J]. Materials Letters,2009,63(28):2402.
13 Hao G L, Wang H, Li X Y. Novel double pore structures of TiAl produced by powder metallurgy processing [J]. Materials Letters,2015,142:11.
14 Wang F, Liang Y F, Shang S L, et al. Phase transformation in Ti-48Al-6Nb porous alloys and its influence on pore properties [J]. Materials & Design,2015,83:508.
15 Guyon J, Hazotte A, Monchoux J P, et al. Effect of powder state on spark plasma sintering of TiAl alloys [J]. Intermetallics,2013,34:94.
16 Gibson J, Ashby F. Cellular solids: Structure and properties. 2nd edition [M].Oxford:Cambridge University Press,1997.
[1] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[2] 阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
[3] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[4] 袁振军, 贺甜甜, 杜三明, 张永振. 硼铁含量对铜基粉末冶金制动材料性能的影响[J]. 材料导报, 2018, 32(18): 3223-3229.
[5] 张春芝, 孔令亮, 李辉平. 镍添加对粉末冶金Al94.5Cu4Mg1.5耐腐蚀性能的提升作用*[J]. 《材料导报》期刊社, 2017, 31(20): 39-43.
[6] 刘彦强, 樊建中, 马自力, 杨必成, 聂俊辉, 魏少华, 郝心想, 邓凡. 泡沫铝三明治板的研究与应用进展*[J]. 《材料导报》期刊社, 2017, 31(15): 101-107.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed