Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1663-1667    https://doi.org/10.11896/j.issn.1005-023X.2018.10.018
  材料研究 |
石墨烯纳米片/AZ91镁基复合材料的显微组织与力学性能
袁秋红,周国华,廖 琳
宜春学院物理科学与工程技术学院,宜春 336000
Microstructure and Mechanical Properties of Graphene Nanosheets Reinforced AZ91 Alloy Matrix Composite
YUAN Qiuhong, ZHOU Guohua, LIAO Lin
Physical Science and Technology College, Yichun University, Yichun 336000
下载:  全 文 ( PDF ) ( 3444KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用铸造工艺制备了石墨烯纳米片(GNPs)增强的AZ91镁基复合材料,测试了复合材料的力学性能,并利用光学显微镜、X射线衍射仪、透射电子显微镜、扫描电子显微镜和能谱仪对复合材料的微观组织、界面结合和断口形貌进行了表征和分析,讨论了复合材料的强化机理。结果表明:石墨烯纳米片可有效细化镁基体的晶粒组织,在添加少量石墨烯纳米片时(0.1%),复合材料的屈服强度、延伸率和显微硬度分别为(164±5) MPa、(7.7±0.1)%和(74.2±2)HV,比基体分别提高了37.8%、13.2%和24.7%。GNPs与镁基体形成了强界面结合,这更有利于发挥应力转移强化、细晶强化等作用,提高镁合金强度、塑性等力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
袁秋红
周国华
廖 琳
关键词:  铸造工艺  AZ91镁合金  石墨烯纳米片  复合材料  力学性能    
Abstract: Graphene nanosheets (GNPs) reinforced AZ91 alloy matrix composite was fabricated by a casting method. The mechanical properties of the composite were tested. The microstructure, interfacial bonding structure and fractographs of the as-cast composite were characterized and analyzed via optical microscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS). The strengthening mechanism of GNPs/AZ91 composite was discussed in detail. The results showed that GNPs can effectively refine the grain sized of AZ91 alloy. The yield strength, elongation and microhardness of AZ91-0.1GNPs composite was (164±5) MPa,(7.7±0.1)% and (74.2±2)HV, increasing by 37.8%,13.2% and 24.7%, respectively, compared to that of as-cast AZ91 alloy. A strong interfacial bonding between GNPs and the matrix of α-Mg have been formed, which is beneficial to the fine-grain strengthening, stress transfer strengthening and so on, resulting in a significant improvement in the tensile strength, ductility and other mechanical properties of magnesium alloy.
Key words:  casting method    AZ91 magnesium alloy    graphene nanosheets    composite    mechanical properties
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TG146.2+2  
  TB333  
基金资助: 国家自然科学基金(51761037);江西省教育厅科技项目
作者简介:  袁秋红:男,1981年生,博士,讲师,研究方向为纳米碳材料增强镁基复合材料 E-mail:Yuanqiuhong@126.com
引用本文:    
袁秋红,周国华,廖 琳. 石墨烯纳米片/AZ91镁基复合材料的显微组织与力学性能[J]. 《材料导报》期刊社, 2018, 32(10): 1663-1667.
YUAN Qiuhong, ZHOU Guohua, LIAO Lin. Microstructure and Mechanical Properties of Graphene Nanosheets Reinforced AZ91 Alloy Matrix Composite. Materials Reports, 2018, 32(10): 1663-1667.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.018  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1663
1 Chen L Y, Xu J Q, Choi H,et al. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles[J]. Nature,2015,528(7583):539.
2 Shin S E, Choi H J, Hwang J Y, et al. Strengthening behavior of carbon/metal nanocomposites[J]. Scientific Reports,2015,5(16114):1.
3 Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008,321(5887):385.
4 Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano letters,2008,8(3):902.
5 Yuan Q H, Zhou G H, Liao L, et al. Interfacial structure in AZ91 alloy composites reinforced by graphene nanosheets[J]. Carbon,2017,127:177.
6 Rashad M, Pan F, Asif M. Exploring mechanical behavior of Mg-6Zn alloy reinforced with graphene nanoplatelets[J]. Materials Science & Engineering A,2016,649:263.
7 Das A, Harimkar S P. Effect of graphene nanoplate and silicon carbide nanoparticle reinforcement on mechanical and tribological pro-perties of spark plasma sintered magnesium matrix composites[J]. Journal of Materials Science & Technology,2014,30(11):1059.
8 Rashad M, Pan F, Asif M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs) [J]. Journal of Industrial & Engineering Chemistry,2014,20(6):4250.
9 Rashad M, Pan F, Tang A, et al. Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method[J]. Journal of Industrial & Engineering Chemistry,2015,23(25):243.
10 Li G, Xiong B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites[J]. Journal of Alloys & Compounds,2017,697(15):31.
11 Yuan Qiuhong, Zou Shaoming, Xiong Jianqiang, et al. Mechanical properties of AZ91D alloy reinforced by carbon nanotubes coated MgO [J]. Special Casting and Nonferrous Alloys,2014,34(12):1307(in Chinese).
袁秋红,邹韶明,熊建强,等.氧化镁包覆CNTs增强的AZ91D基复合材料的力学性能[J].特种铸造及有色合金,2014,34(12):1307.
12 Yang Yonggang, Chen Chengmeng, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials,2008,23(3):193(in Chinese).
杨永岗,陈成猛,等.氧化石墨烯及其与聚合物的复合[J].新型炭材料,2008,23(3):193.
13 Yuan Qiuhong, Zeng Xiaoshu,Qi Daohua. Mechanical properties and microstructure of carbon nanotubes(CNTs)/ZM5-T4 alloy compo-sites[J]. Special Casting and Nonferrous Alloys,2007,27(12):963(in Chinese).
袁秋红,曾效舒,戚道华.T4态CNTs/ZM5复合材料的研究[J].特种铸造及有色合金,2007,27(12):963.
14 Yuan Qiuhong, Zeng Xiaoshu, et al. Preparation and mechanical properties of graphene nanosheets reinforced AZ91 alloy composites[J]. Special Casting and Nonferrous Alloys,2016,36(3):282(in Chinese).
袁秋红,曾效舒,等.石墨烯纳米片/AZ91镁基复合材料制备与力学性能[J]. 特种铸造及有色合金,2016,36(3):282.
15 Xu Qiang, Zeng Xiaoshu, Zhou Guohua. Mechanical properties of CNTs/AZ31 composites prepared by adding CNTs block with plun-ger[J]. The Chinese Journal of Nonferrous Metals,2010,20(2):189(in Chinese).
徐强,曾效舒,周国华.钟罩浸块铸造法制备的 CNTs/AZ31 镁基复合材料的力学性能[J].中国有色金属学报,2010,20(2):189.
16 Xiang S, Wang X, Gupta M, et al. Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties[J]. Scientific Reports,2016,6(12):38824.
17 Yuan Q H, Zeng X S, Liu Y, et al. Microstructure and mechanical properties of AZ91 alloy reinforced by carbon nanotubes coated with MgO[J]. Carbon,2016,96(1):843.
18 Ganesh V V, Chawla N. Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: Experiments and microstructure-based simulation[J]. Materials Science & Enginee-ring A,2005,391(1-2):342.
19 Zhang Z, Chen D L. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength[J]. Scripta Materialia,2006,54(7):1321.
20 Bakshi S R, Agarwal A. An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon,2011,49(2):533.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[4] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[5] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[8] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[9] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[10] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[11] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[12] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[13] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[14] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[15] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed