Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1668-1671    https://doi.org/10.11896/j.issn.1005-023X.2018.10.019
  材料研究 |
聚丙烯腈基高模量碳纤维导热性能的影响因素
田艳红,乔伟静,张学军,张为芹
北京化工大学材料科学与工程学院,碳纤维及功能高分子教育部重点实验室,北京 100029
Factors Affecting the Thermal Conductivity of PAN-based Carbon Fiber with High Modulus
TIAN Yanhong, QIAO Weijing, ZHANG Xuejun, ZHANG Weiqin
Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029
下载:  全 文 ( PDF ) ( 2992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用激光闪射法测试了6种不同强度和模量的聚丙烯腈(PAN)基碳纤维(CF)的热导率,探讨了不同温度下CF轴向热导率的变化及样品厚度对热导率测试结果的影响。采用X射线衍射(XRD)、拉曼等技术检测了CF的微晶尺寸、取向及有序度,考察了CF热导率与其微观结构的相关性。结果显示,实验范围内PAN基CF样品厚度对热导率测试结果略有影响,热导率随测试温度升高而降低,PAN基CF的致密性、晶体尺寸及结构有序度对其热导率有较大影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田艳红
乔伟静
张学军
张为芹
关键词:  碳纤维  聚丙烯腈基  热导率  取向  晶体结构    
Abstract: The thermal conductivity of six kinds of polyacrylonitrile (PAN)-based carbon fiber (CF) with different strength and modulus was measured by laser flash method. The effect of the thickness of CF samples and the test temperature on the CF axial thermal conductivity was studied. The crystallite size, orientation and order degree of CF were measured by X-ray diffraction (XRD) and Raman spectroscopy. The relationship between the thermal conductivity of CF and its microstructure was investigated. The results show that the thickness of the PAN-based CF sample has a slight effect on the thermal conductivity test, and the thermal conductivity decreases with the increase of the test temperature. The compactness, crystal size and structural order of the PAN-based CF have a greater impact on its thermal conductivity.
Key words:  carbon fiber    polyacrylonitrile-based    thermal conductivity    orientation    crystal structure
出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TQ342.74  
基金资助: 科技部863计划(2015AA03A204)
作者简介:  田艳红:女,1969年生,博士,副研究员,主要研究方向为碳纤维制备工艺及应用性能 E-mail:tianyh@mail.buct.edu.cn
引用本文:    
田艳红,乔伟静,张学军,张为芹. 聚丙烯腈基高模量碳纤维导热性能的影响因素[J]. 《材料导报》期刊社, 2018, 32(10): 1668-1671.
TIAN Yanhong, QIAO Weijing, ZHANG Xuejun, ZHANG Weiqin. Factors Affecting the Thermal Conductivity of PAN-based Carbon Fiber with High Modulus. Materials Reports, 2018, 32(10): 1668-1671.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.019  或          https://www.mater-rep.com/CN/Y2018/V32/I10/1668
1 Li S T, Peng C Y, Xing S L, et al. Research progress on thermal conductivity of carbon fiber reinforced polymer matrix composites[J]. Materials Review A:Review Papers,2012,26(7):79(in Chinese).
李仕通,彭超义,邢素丽,等.导热型碳纤维增强聚合物基复合材料的研究进展[J].材料导报:综述篇,2012,26(7):79.
2 Jana P, Fierro V, Celzard A. Sucrose-based carbon foams with enhanced thermal conductivity[J]. Industrial Crops and Products,2016,89:498.
3 Jiang W T, Ding G L, Peng H. Measurement and model on thermal conductivities of carbon nanotube [J]. International Journal of Thermal Sciences,2009,48:1108.
4 Takahiro Nomura, Kazuki Tabuchi, Chunyu Zhu, et al. High thermal conductivity phase change composite with percolating carbon fiber network[J]. Applied Energy,2015,154:678.
5 Karaipekli A, Sari A, Kaygusuz K. Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications[J]. Renewable Energy,2007,32(13):2201.
6 Thurid S Gspann, Stefan M Juckes, John F Niven, et al. High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology[J]. Carbon,2017,114:160.
7 Yu G C, Wu L Z, Feng L J. Enhancing the thermal conductivity of carbon fiber reinforced polymer composite laminates by coating highly oriented graphite films[J]. Materials and Design,2015,88:1063.
8 Fei H Y, Zhu P, Song Y J, et al. Thermal conduction of thermoplastic polyimide composites modified with graphite/carbon fiber[J]. Acta Materiae Compositae Sinica,2007,24(5):44(in Chinese).
费海燕,朱鹏,宋艳江,等.石墨和碳纤维分别改性热塑性聚酰亚胺复合材料的导热行为[J].复合材料学报,2007,24(5):44.
9 Liang J F, Mrinal C Saha, Cengiz Altan M. Effect of carbon nanofibers onthermal conductivity of carbon fiber reinforced composites[J]. Procedia Engineering,2013,56:814.
10 Han Seungjin, Chung D D L. Increasing the through-thickness thermal conductivity of carbon fiber polymer- matrix composite by curing pressure increase and filler incorporation[J]. Composites Science and Technology,2011,71:1944.
11 Kim Hyeon-Hye, Han Woong, Lee Hae-seong, et al. Preparation and characterization of silicon nitride (Si N)-coated carbon fibers and their effects on thermal properties in composites[J]. Materials Science and Engineering B,2015,200:132.
12 Ye Ji Noh, Seong Yun Kim. Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and grapheme nanoplatelets[J]. Polymer Testing,2015,45:132.
13 Hou L G, Wu R Z, Wang X D, et al. Microstructure, mechanical properties and thermal conductivity of the short carbon fiber reinforced magnesium matrix composites[J]. Journal of Alloys and Compounds,2017,695:2820.
14 Wang Z L, Tang D W, Zheng X H, et al. Simultaneous measurements of thermal conductivity, thermal capacity of an individual carbon fiber[J]. Journal of Engineering Thermophysics,2007,28(3):490(in Chinese).
王照亮,唐大伟,郑兴华,等.3ω法测量单根碳纤维导热系数和热容[J].工程热物理学报,2007,28(3):490.
15 Wang J L, Gu M, Ma W G. Temperature dependence of the thermal conductivity of individual pitch-derived carbon fibers[J]. New Carbon Materials,2008,23(3):259.
16 He F M, Li Z P, Feng Z H, et al. Evaluation of thermal-transmission properties of PAN carbon fiber at high temperature[J]. Mate-rials China,2013,32(4):236(in Chinese).
何凤梅,李仲平,冯志海,等.PAN基碳纤维高温热传输性能表征[J].中国材料进展,2013,32(4):236.17 Wang T T, Gu Y Z, Wang S K, et al. Characterization on axial thermal conductivity of carbon fiber and its influence factors[J]. Journal of Beijing University of Aeronautics and Astronautics,doi:10.13700/j.bh.1001-5965.2016.0757.
王婷婷,顾轶卓,王绍凯,等.碳纤维轴向导热性能表征及影响因素[J].北京航空航天大学学报,doi:10.13700/j.bh.1001-5965.2016.0757.
18 Krzysztof K Koziol, Dawid Janas, Brown E, et al. Thermal properties of continuously spun carbon nanotube fibres[J]. Physica E,2017,88:104.
19 Lin H, Dong H, Xu S, et al. Thermal transport in graphene fiber fabricated by wet-spinning method[J]. Materials Letters,2016,183:147.
[1] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[2] 杨劼, 任慧平, 王海燕, 高雪云, 刘宗昌. 低碳贝氏体钢等温淬火变体选择与特殊晶面定量化表征[J]. 材料导报, 2024, 38(9): 22100050-8.
[3] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[4] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[5] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[6] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[7] 王金涛, 段体岗, 郭建章, 马力, 余聚鑫, 张海兵. 三维碳纤维基复合材料及其在海水溶解氧电池中的应用性能[J]. 材料导报, 2024, 38(4): 22040345-6.
[8] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[9] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[10] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[11] 陈历, 朱孙科, 董绍江, 肖勇, 宋霞. 湿热环境对碳纤维复合材料防撞梁低速碰撞损伤的影响[J]. 材料导报, 2024, 38(23): 23090157-7.
[12] 刘雨昕, 胡倩, 粟茵, 文麒麟, 刘丽欣, 覃钺, 梁露露, 张宏志, 朱静. 具有高热稳定性Sm3+激活硼磷酸盐Na3B6PO13橙红色荧光粉的发光特性[J]. 材料导报, 2024, 38(21): 23080106-6.
[13] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[14] 王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
[15] 朱昊, 李勇, 还大军. 短切CF/PEEK复合材料的制备及抗紫外老化性能[J]. 材料导报, 2024, 38(14): 23020237-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed