Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22100050-8    https://doi.org/10.11896/cldb.22100050
  金属与金属基复合材料 |
低碳贝氏体钢等温淬火变体选择与特殊晶面定量化表征
杨劼, 任慧平*, 王海燕, 高雪云, 刘宗昌
内蒙古科技大学材料与冶金学院,内蒙古 包头 014010
Selection of Isothermal Quenching Variants and Quantitative Characterization of Special Crystal Faces of Low Carbon Bainite Steels
YANG Jie, REN Huiping*, WANG Haiyan, GAO Xueyun, LIU Zongchang
College of Materials and Metallurgy,Inner Mongolia University of Science and Technology,Baotou 014010,Inner Mongolia, China
下载:  全 文 ( PDF ) ( 12936KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析低碳贝氏体钢(15Cr12CuSiMoMn)的变体选择与特殊晶面取向差分布对其力学性能的影响,以及变体选择与晶面取向差之间的相互联系,对实验钢充分奥氏体化后在指定温度进行等温淬火热处理,随后分析并表征等温转变过程中变体选择的演变规律与特殊晶体学面取向差分布规律。结果表明,实验钢所得{100}极图与{100}标准极图吻合,贝氏体变体与母相奥氏体的位向关系符合K-S关系,随着等温淬火温度的升高,贝氏体相变速率加快,变体选择能力降低,同时大角度晶界HAGBs(45~65°)、小角度晶界LAGBs(2~15°)界面含量减少。等温淬火60 min发现320 ℃时原奥氏体晶粒内同一CP组中V1/V2、V1/V3、V1/V5等变体对数量较340 ℃时分别增加2.4%、15%、1.1%,同一CP组中的贝氏体变体可增加大角度晶界;320 ℃等温淬火后实验钢具有较大的整体界面取向差、解理面(100)取向差以及滑移面(110)取向差,其整体界面取向差范围为3.2~62.5°,解理面(100)取向差范围为6.9~47.8°,滑移面(110)取向差范围为1~29.2°。通过控制贝氏体变体分布与含量进而影响其有效解理面(100)取向差与滑移面(110)取向差的分布范围,增大特殊晶面取向差范围有利于优化贝氏体组织,最终达到改善其力学性能的目的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨劼
任慧平
王海燕
高雪云
刘宗昌
关键词:  贝氏体钢  取向分布  变体选择  取向差    
Abstract: In order to analyze the influence of variant selection and special crystal plane misorientation distribution of low carbon bainite steel (15Cr12CuSiMoMn) on its mechanical properties, and the correlation between variant selection and crystal plane misorientation, the experimental steel was subjected to isothermal quenching heat treatment at a specified temperature after fully austenitizing, and then the evolution law of variant selection and the distribution law of special crystallographic plane misorientation during isothermal transition were analyzed and characterized. The results show that the {100} standard polar diagram is basically consistent with the {100} polar diagram of the experimental steel. The orientation relationship between the bainite variant and the parent austenite conforms to the K-S relationship. With the increase of isothermal quenching temperature, the bainite transformation rate is accelerated, and the ability of variant selection is reduced. At the same time, the content of HAGBs (45—65°) and LAGBs (2—15°) is decreased. After isothermal quenching for 60 min, it is found that the number of variant pairs V1/V2, V1/V3, V1/V5 in the same CP group increases by 2.4%, 15%, 1.1% in 320 ℃ compared with 340 ℃, and the bainite variant in the same CP group can increase the LAGBs. After isothermal quenching at 320 ℃, the experimental steel has large overall interfacial misorientation, cleavage plane (100) misorientation and slip plane (110) misorientation. The misorientation of the overall plane ranges from 3.2°to 62.5°, the misorientation of the cleavage plane (100) ranges from 6.9° to 47.8°, and the misorientation of the slip plane (110) ranges from 1° to 29.2°. By controlling the distribution and content of bainite variants, which affects the distribution range of the effective cleavage surface orientation difference (100) and the slip surface orientation difference (110), increasing the range of special crystal plane orientation difference is conducive to optimizing the bainite structure.
Key words:  bainite steel    orientation distribution    variant selection    orientation difference
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51764047)
通讯作者:  * 任慧平,内蒙古科技大学教授、博士研究生导师。1981.09—1985.07 包头钢铁学院金属材料及热处理专业学习;1987.09—1990.07 北京科技大学材料学专业读研究生,获硕士学位;1997.09—2001.03北京科技大学材料学专业读研究生,获博士学位。主要从事稀土在钢铁材料中应用的基础研究。兼任教育部2006—2010年高职高专材料类教学指导委员会主任;白云鄂博矿稀土及铌资源高效利用省部共建教育部重点实验室常务副主任;内蒙古自治区新金属材料重点实验室主任;机械工程学会热处理分会与材料学分会理事;中国体视学会材料学分会理事;内蒙古自治区“321人才工程”入选人才。发表学术论文50余篇,其中SCI、EI收录20多篇。renhuiping@imust.edu.cn   
作者简介:  杨劼,2017年6月毕业于内蒙古科技大学,获得硕士学位。于2017年9月至今在内蒙古科技大学攻读博士研究生学位,在任慧平教授的指导下进行研究。目前主要研究领域为贝氏体高强钢。
引用本文:    
杨劼, 任慧平, 王海燕, 高雪云, 刘宗昌. 低碳贝氏体钢等温淬火变体选择与特殊晶面定量化表征[J]. 材料导报, 2024, 38(9): 22100050-8.
YANG Jie, REN Huiping, WANG Haiyan, GAO Xueyun, LIU Zongchang. Selection of Isothermal Quenching Variants and Quantitative Characterization of Special Crystal Faces of Low Carbon Bainite Steels. Materials Reports, 2024, 38(9): 22100050-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100050  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22100050
1 Furuhara T, Kawata H, Morito S, et al. Metallurgical and Materials Transactions, 2008, 39(5), 1003.
2 Kim M C, Yong J O, Hong J H. Scripta Materialia, 2000, 43(3), 205.
3 Hwang B, Yang G K, Lee S, et al. Metallurgical & Materials Transactions A, 2005, 36(8), 2107.
4 Lambert A, Garat X, Sturel T, et al. Scripta Materialia, 2000, 43(2), 161.
5 You Y, Shang C, Nie W, et al. Materials Science & Engineering A, 2012, 558(15), 692.
6 Li X, Ma X, Subramanian S V, et al. Materials Science and Engineering A, 2014, 36(8), 2107.
7 Flower H M, Lindley T C. Metal Science Journal, 2000, 16(1), 26.
8 Morris J W, Lee C S, Guo Z. Transactions of the Iron & Steel Institute of Japan, 2007, 43(3), 410.
9 Terentyev D, Gao F. Materials Science and Engineering A, 2013, 12(3), 125.
10 Hiromoto, Kitahara. Acta Materialia, 2006, 54(5), 1279.
11 Kurdjumow G V, Sachs G. Zeitschrift für Physik A Hadrons and Nuclei, 1930, 64(5), 325.
12 Luo C P, Weatherly G C, Liu Z Y. Metallurgical Transactions A, 1992, 43(3), 410.
13 Furuhara N. Acta Materialia, 2012, 53(5), 1279.
14 Stormvinter A, Miyamoto G, Furuhara T, et al. Acta Materialia, 2012, 60(20), 7265.
15 Titahara R. Acta Materialia, 2005, 34(4), 179.
16 Terentyev D. Acta Materialia, 2012, 43(3), 409.
17 Guo Z, Lee C S, Morris J W. Acta Materialia, 2004, 52(19), 5511.
18 Kaneshita T, Miyamoto G, Furuhara T. Acta Materialia, 2017, 27(11), 368.
19 Liu S, Li X, Guo H, et al. Philosophical Magazine, 2018, 22(15), 25.
20 Li X C, Sun M Y, Zhao J X, et al. Acta Metallurgica Sinica, 2020, 56(4), 8 (in Chinese).
李秀程, 孙明煜, 赵靖霄, 等. 金属学报, 2020, 56(4), 8.
21 Guo H, Gao X, Bai Y, et al. Materials Characterization, 2012, 67, 34.
22 Wu J, Zhang W Z. Acta Metallurgica Sinica, 2009, 45(8), 9 (in Chinese).
吴静, 张文征. 金属学报, 2009, 45(8), 9.
23 Kamaya M, Joao Q, Li L M, et al. Applied Mechanics & Materials, 2012, 7(8), 173.
24 Fu W, Song X, Long L, et al. Acta Metallurgica Sinica, 2016, 22(15), 25.
25 Yuan J H, Zhang Q H, Wang J L, et al. Acta Metallurgica Sinica, 2020, 58(12), 15 (in Chinese).
原家华, 张秋红, 王金亮, 等. 金属学报, 2020, 58(12), 15.
26 Gao D, Zhou Y, Yu Z, et al. Acta Metallurgica Sinica, 2022, 58(9), 141 (in Chinese).
高栋, 周宇, 于泽,等. 金属学报, 2022, 58(9), 141.
[1] 王晨宇, 韦经杰, 龙武剑, 董必钦. 纤维取向分布对水泥基复合材料力学性能的影响及其评价方法的研究进展[J]. 材料导报, 2022, 36(15): 20120133-13.
[2] 郑国明, 李磊, 毛小南, 蔡建华, 吴聪, 雷磊. 钛合金BCC↔HCP相变的变体选择及其对晶体取向的影响[J]. 材料导报, 2019, 33(17): 2910-2917.
[3] 郭浩冉, 高古辉, 桂晓露, 白秉哲. 显微组织对贝氏体钢筋氢脆敏感性的影响[J]. 材料导报, 2019, 33(10): 1717-1722.
[4] 武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed