Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22100039-16    https://doi.org/10.11896/cldb.22100039
  金属与金属基复合材料 |
搅拌摩擦固相沉积增材制造研究现状
王子健1,2, 孙舒蕾1,2, 肖寒3, 冉旭东1, 陈强3, 黄树海3, 赵耀邦4, 周利1,2,*, 黄永宪1
1 哈尔滨工业大学先进焊接与连接国家重点实验室,哈尔滨 150001
2 哈尔滨工业大学(威海) 山东省特种焊接技术重点实验室,山东 威海 264209
3 中国兵器工业第五九研究所,重庆 400039
4 上海航天精密机械研究所,上海 201600
Research Status of Additive Friction Stir Deposition
WANG Zijian1,2, SUN Shulei1,2, XIAO Han3, RAN Xudong3, CHEN Qiang3, HUANG Shuhai3, ZHAO Yaobang4, ZHOU Li1,2,*, HUANG Yongxian1
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
2 Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China
3 No.59 Research Institute of China Ordnance Industries, Chongqing 400039, China
4 Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
下载:  全 文 ( PDF ) ( 23687KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于搅拌摩擦焊与增材制造技术开发的搅拌摩擦固相沉积增材制造为金属增材制造提供了一种独特的固相加工路线,其具有适用材料范围广、构件综合性能良好、效率高、成本低等优点,在航空航天、武器装备等领域金属及金属基复材结构件制备方面具有广阔的应用潜力。鉴于搅拌摩擦固相沉积增材制造的独特优势,本文首先对搅拌摩擦固相沉积增材制造技术的基本原理、完全耦合的热变形过程以及沉积层宏观成形进行了简单介绍,之后对增材沉积层微观组织演变和力学性能进行了重点论述,大量研究表明搅拌摩擦固相沉积增材制造中独特固相成形可使增材构件产生类锻造态显微组织,该技术已被逐步应用于结构件制备、修复、涂层加工等领域中。最后对搅拌摩擦固相沉积增材制造技术进行了展望,指出该技术未来需在仿真模拟、制造工艺、技术优化、质量监测、复杂构件制备等领域中进一步研究和突破。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王子健
孙舒蕾
肖寒
冉旭东
陈强
黄树海
赵耀邦
周利
黄永宪
关键词:  搅拌摩擦固相沉积增材制造  材料热变形行为  宏观成形  微观组织演变  力学性能    
Abstract: Additive friction stir deposition based on friction stir welding and additive manufacturing technology provides a unique solid processing route for metal additive manufacturing. It has the advantages of a wide range of applicable materials, fine comprehensive performance of components, high efficiency and low cost, and so on. It has broad application potential in aerospace, weapons and other fields in the manufacture of metal and metal base composite component. In view of the unique advantages of the additive friction stir deposition, the basic principle, the thermal deformation process with complete coupling and the macroscopic forming of the deposit layer are briefly introduced in this paper. The microstructure evolution and mechanical properties of the additive deposit layer are emphatically discussed. A large number of studies have shown that the unique solid phase forming in the additive friction stir deposition can produce the forged microstructure of the additive component. It has been gradually used in the manufacture, repair, coating and other fields. Finally, the prospect of additive friction stir deposition is presented. It is pointed out that further research and breakthrough should be made in the fields of simulation, manufacturing process, technology optimization, quality monitoring, complex component manufacture and so on.
Key words:  additive friction stir deposition    material thermal deformation    macroscopic formation    microstructure evolution    mechanical property
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TG453.9  
基金资助: 国家自然科学基金(51974100);山东省泰山学者青年专家项目(tsqn202211089);山东省自然科学基金(ZR2020ME151)
通讯作者:  * 周利,副教授/博士研究生导师。主要从事固相连接、金属再制造与增材制造、焊接与增材制造冶金等研究,任中国焊接学会压力焊专委会委员、中国焊接学会青年工作委员会委员、中国有色金属学会先进焊接与连接专业委员会委员等学术职务。以第一/通信作者发表SCI论文70余篇,授权发明专利20余项。zhou.li@hit.edu.cn   
作者简介:  王子健,2021年毕业于合肥工业大学,获得工学学士学位。现为哈尔滨工业大学(威海)材料科学与工程学院硕士研究生,目前主要研究领域为先进材料及异种材料搅拌摩擦焊。
引用本文:    
王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
WANG Zijian, SUN Shulei, XIAO Han, RAN Xudong, CHEN Qiang, HUANG Shuhai, ZHAO Yaobang, ZHOU Li, HUANG Yongxian. Research Status of Additive Friction Stir Deposition. Materials Reports, 2024, 38(9): 22100039-16.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100039  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22100039
1 Thomes W M, Nicholas E D, Needham J C, et al. U K. patent application, GB9125978, 1991.
2 Gao S K, Zhao H Y, Li G H, et al. Materials Reports, 2022, 36(24), 149 (in Chinese).
高士康, 赵洪运, 李高辉, 等.材料导报, 2022, 36(24), 149.
3 Meng X C, Huang Y X, Cao J, et al. Progress in Materials Science, 2021, 115, 100706.
4 Han S W, Zhou C Z, Peng X Y, et al. Journal of Chongqing University of Technology(Nature Science), 2023, 37(4), 151(in Chinese).
韩世伟, 周长征, 彭小洋, 等. 重庆理工大学学报(自然科学), 2023, 37(4), 151.
5 Shi L, Li Y, Xiao Y C, et al. Journal of Materials Engineering, 2022, 50(1), 1 (in Chinese).
石磊, 李阳, 肖亦辰, 等.材料工程, 2022, 50(1), 1.
6 Wen Q, Liu J L, Meng X C, et al. Transactions of the China Welding Institution, 2022, 43(6), 1 (in Chinese).
温琦, 刘景麟, 孟祥晨, 等.焊接学报, 2022, 43(6), 1.
7 Palanivel S, Nelaturu P, Glass b, et al. Materials and Design, 2015, 65, 934.
8 Palanivel S, Sidhar H, Mishra R S. JOM, 2015, 67(3), 616.
9 Dilip J J S, Babu S, Rajan S V, et al. Materials and Manufacturing Processes, 2013, 28(2), 189.
10 Dilip J J S, RAM G D J. Materials Characterization, 2013, 86, 146.
11 Rivera O G, Allison P G, Jordon J B, et al. Materials Science and Engineering A, 2017, 694, 1.
12 Gopan V, Wins L D K, Surendran A. CIRP Journal of Manufacturing Science and Technology, 2021, 32, 228.
13 Mishra R S, Haridas R S, Agrawal P. Science and Technology of Welding and Joining, 2022, 27(3), 141.
14 Yu H Z, Jones M E, Brady G W, et al. Scripta Materialia, 2018, 153, 122.
15 Garcia D, Hartley W D, Rauch H A, et al. Additive Manufacturing, 2020, 34, 101386.
16 Yang H G. Strength of Materials, 2020, 52, 24.
17 Stubblefield G G, Fraser K, Phillips B J, et al. Materials and Design, 2021, 202, 109514.
18 Perry M E J, Rauch H A, Griffiths R J, et al. Materialia, 2021, 18, 101159.
19 Griffiths R J, Garcia D, Song J, et al. Materialia, 2021, 15, 100967.
20 Beck S C, Rutherford B A, Avery D Z, et al. Materials Science and Engineering A, 2021, 819, 141351.
21 Phillips B J, Mason C J T, Beck S C, et al. Journal of Materials Proces-sing Technology, 2021, 295, 117169.
22 Mason C J T, Avery D Z, Phillips B J, et al. Journal of Dynamic Beha-vior of Materials, 2021, 8, 214.
23 Robinson T W, Williams M B, Rao H M, et al. Journal of Manufacturing Science and Engineering, 2022, 144(6), 061013.
24 Priedeman J L, Phillips B J, Lopez J J, et al. Metals, 2020, 10(11), 1538.
25 Beladi H, Farabi E, Hodgson P D, et al. Philosophical Magazine, 2021, 102(7), 618.
26 Alzahrani B, Seleman M M E, Ahmed M M Z, et al. Metals, 2021, 14, 6018.
27 Ahmed M M Z, Seleman M M E, Elfishawy E, et al. Materials, 2021, 14, 6396.
28 Martin L P, Luccitti A, Walluk M. The International Journal of Advanced Manufacturing Technology, 2022, 121, 2365.
29 Williams M B, Robinson T W, Williamson C J, et al. Metals, 2021, 11(11), 1739.
30 Zeng C Y, Ghadimi H, Ding H, et al. Materials, 2022, 15, 3676.
31 Perry M E J, Griffiths R J, Garcia D, et al. Additive Manufacturing, 2021, 35, 101293.
32 Khodabakhshi F, Gerlich A P. Journal of Manufacturing Processes, 2018, 16, 77.
33 Rathee S, Srivastava M, Pandey P M, et al. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 560.
34 Rivera O G, Allison P G, Brewer L N, et al. Materials Science and Engineering A, 2018, 724, 547.
35 Avery D Z, Phillips B J, Mason C J T, et al. Metallurgical and Materials Transactions A, 2020, 51, 2778.
36 Phillips B J, Williamson C J, Kinser R P, et al. Materials, 2021, 14(21), 6732.
37 Agrawal P, Haridas R S, Yadav S, et al. Additive Manufacturing, 2021, 47, 102259.
38 Mason C J T, Rodriguez R I, Avery D Z, et al. Additive Manufacturing, 2021, 40, 101879.
39 Mukhopadhyay A, Saha P. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(9), 422.
40 Phillips B J, Avery D Z, Liu T, et al. Materialia, 2019, 7, 100387.
41 Tang W S, Yang X Q, Tian C B, et al. Journal of Aeronautical Mate-rials, 2022, 42(1), 59 (in Chinese).
唐文珅, 杨新岐, 田超博, 等.航空材料学报, 2022, 42(1), 59.
42 Yang X Q, Tian C B, Tang W S, et al. MW Metal Forming, 2022(6), 1 (in Chinese).
杨新岐, 田超博, 唐文珅, 等.金属加工(热加工), 2022(6), 1.
43 Avery D Z, Rivera O G, Mason C J T, et al. JOM, 2018, 70, 2475.
44 Huang K, Logé R E. Materials and Design, 2016, 111, 548.
45 Montheillet F, Cohen M, Jonas J J. Acta Metallurgica, 1984, 32(11), 2077.
46 Yu H Z, Mishra R S. Materials Research Letters, 2021, 9(2), 71.
47 Srivastava M, Rathee S, Maheshwari S, et al. Critical Reviews in Solid State and Materials Sciences, 2019, 44(5), 345.
48 Rathee S, Srivastava M, Pandey P M, et al. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 560.
49 Rutherford B A, Avery D Z, Phillips B J, et al. Metals, 2020, 10(7), 947.
50 Zhu N, Avery D Z, Rutherford B A, et al. Metals, 2021, 11, 1773.
51 Anderson-Wedge K, Avery D Z, Daniewicz S R, et al. International Journal of Fatigue, 2021, 142, 105951.
52 https://www.meldmanufacturing.com.
53 Griffiths R J, Perry M E J, Sietins J M, et al. Journal of Materials Engineering and Performance, 2018, 28, 648.
54 Gottwald R B, Griffiths R J, Petersen D T, et al. Accounts of Materials Research, 2021, 2, 780.
55 Griffiths R J, Petersen D T, Garcia D, et al. Applied Sciences-Basel, 2019, 9(17), 3486.
56 Martin L P, Luccitti A, Walluk M. International Journal of Advanced Manufacturing Technology, 2021, 118(3-4), 759.
57 Qi S, Wen Q, Ji S D, et al. International Journal of Advanced Manufacturing Technology, 2019, 105(11), 4761.
58 Zuo Y Y, Liu H, Gong P. et al. Acta Metallurgica Sinica-English Letters, 2021, 34(10), 1345.
59 Martin L P, Luccitti A, Walluk M. The International Journal of Advanced Manufacturing Technology, 2022, 121, 2365.
60 Chou K, Eff M, Cox C D, et al. Data in Brief, 2022, 41, 107862.
[1] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[2] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[3] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[4] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[5] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[6] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[7] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[8] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[9] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[10] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[11] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[12] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[13] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[14] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[15] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed