Research Status of Additive Friction Stir Deposition
WANG Zijian1,2, SUN Shulei1,2, XIAO Han3, RAN Xudong3, CHEN Qiang3, HUANG Shuhai3, ZHAO Yaobang4, ZHOU Li1,2,*, HUANG Yongxian1
1 State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China 2 Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology at Weihai, Weihai 264209, Shandong, China 3 No.59 Research Institute of China Ordnance Industries, Chongqing 400039, China 4 Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600, China
Abstract: Additive friction stir deposition based on friction stir welding and additive manufacturing technology provides a unique solid processing route for metal additive manufacturing. It has the advantages of a wide range of applicable materials, fine comprehensive performance of components, high efficiency and low cost, and so on. It has broad application potential in aerospace, weapons and other fields in the manufacture of metal and metal base composite component. In view of the unique advantages of the additive friction stir deposition, the basic principle, the thermal deformation process with complete coupling and the macroscopic forming of the deposit layer are briefly introduced in this paper. The microstructure evolution and mechanical properties of the additive deposit layer are emphatically discussed. A large number of studies have shown that the unique solid phase forming in the additive friction stir deposition can produce the forged microstructure of the additive component. It has been gradually used in the manufacture, repair, coating and other fields. Finally, the prospect of additive friction stir deposition is presented. It is pointed out that further research and breakthrough should be made in the fields of simulation, manufacturing process, technology optimization, quality monitoring, complex component manufacture and so on.
1 Thomes W M, Nicholas E D, Needham J C, et al. U K. patent application, GB9125978, 1991. 2 Gao S K, Zhao H Y, Li G H, et al. Materials Reports, 2022, 36(24), 149 (in Chinese). 高士康, 赵洪运, 李高辉, 等.材料导报, 2022, 36(24), 149. 3 Meng X C, Huang Y X, Cao J, et al. Progress in Materials Science, 2021, 115, 100706. 4 Han S W, Zhou C Z, Peng X Y, et al. Journal of Chongqing University of Technology(Nature Science), 2023, 37(4), 151(in Chinese). 韩世伟, 周长征, 彭小洋, 等. 重庆理工大学学报(自然科学), 2023, 37(4), 151. 5 Shi L, Li Y, Xiao Y C, et al. Journal of Materials Engineering, 2022, 50(1), 1 (in Chinese). 石磊, 李阳, 肖亦辰, 等.材料工程, 2022, 50(1), 1. 6 Wen Q, Liu J L, Meng X C, et al. Transactions of the China Welding Institution, 2022, 43(6), 1 (in Chinese). 温琦, 刘景麟, 孟祥晨, 等.焊接学报, 2022, 43(6), 1. 7 Palanivel S, Nelaturu P, Glass b, et al. Materials and Design, 2015, 65, 934. 8 Palanivel S, Sidhar H, Mishra R S. JOM, 2015, 67(3), 616. 9 Dilip J J S, Babu S, Rajan S V, et al. Materials and Manufacturing Processes, 2013, 28(2), 189. 10 Dilip J J S, RAM G D J. Materials Characterization, 2013, 86, 146. 11 Rivera O G, Allison P G, Jordon J B, et al. Materials Science and Engineering A, 2017, 694, 1. 12 Gopan V, Wins L D K, Surendran A. CIRP Journal of Manufacturing Science and Technology, 2021, 32, 228. 13 Mishra R S, Haridas R S, Agrawal P. Science and Technology of Welding and Joining, 2022, 27(3), 141. 14 Yu H Z, Jones M E, Brady G W, et al. Scripta Materialia, 2018, 153, 122. 15 Garcia D, Hartley W D, Rauch H A, et al. Additive Manufacturing, 2020, 34, 101386. 16 Yang H G. Strength of Materials, 2020, 52, 24. 17 Stubblefield G G, Fraser K, Phillips B J, et al. Materials and Design, 2021, 202, 109514. 18 Perry M E J, Rauch H A, Griffiths R J, et al. Materialia, 2021, 18, 101159. 19 Griffiths R J, Garcia D, Song J, et al. Materialia, 2021, 15, 100967. 20 Beck S C, Rutherford B A, Avery D Z, et al. Materials Science and Engineering A, 2021, 819, 141351. 21 Phillips B J, Mason C J T, Beck S C, et al. Journal of Materials Proces-sing Technology, 2021, 295, 117169. 22 Mason C J T, Avery D Z, Phillips B J, et al. Journal of Dynamic Beha-vior of Materials, 2021, 8, 214. 23 Robinson T W, Williams M B, Rao H M, et al. Journal of Manufacturing Science and Engineering, 2022, 144(6), 061013. 24 Priedeman J L, Phillips B J, Lopez J J, et al. Metals, 2020, 10(11), 1538. 25 Beladi H, Farabi E, Hodgson P D, et al. Philosophical Magazine, 2021, 102(7), 618. 26 Alzahrani B, Seleman M M E, Ahmed M M Z, et al. Metals, 2021, 14, 6018. 27 Ahmed M M Z, Seleman M M E, Elfishawy E, et al. Materials, 2021, 14, 6396. 28 Martin L P, Luccitti A, Walluk M. The International Journal of Advanced Manufacturing Technology, 2022, 121, 2365. 29 Williams M B, Robinson T W, Williamson C J, et al. Metals, 2021, 11(11), 1739. 30 Zeng C Y, Ghadimi H, Ding H, et al. Materials, 2022, 15, 3676. 31 Perry M E J, Griffiths R J, Garcia D, et al. Additive Manufacturing, 2021, 35, 101293. 32 Khodabakhshi F, Gerlich A P. Journal of Manufacturing Processes, 2018, 16, 77. 33 Rathee S, Srivastava M, Pandey P M, et al. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 560. 34 Rivera O G, Allison P G, Brewer L N, et al. Materials Science and Engineering A, 2018, 724, 547. 35 Avery D Z, Phillips B J, Mason C J T, et al. Metallurgical and Materials Transactions A, 2020, 51, 2778. 36 Phillips B J, Williamson C J, Kinser R P, et al. Materials, 2021, 14(21), 6732. 37 Agrawal P, Haridas R S, Yadav S, et al. Additive Manufacturing, 2021, 47, 102259. 38 Mason C J T, Rodriguez R I, Avery D Z, et al. Additive Manufacturing, 2021, 40, 101879. 39 Mukhopadhyay A, Saha P. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(9), 422. 40 Phillips B J, Avery D Z, Liu T, et al. Materialia, 2019, 7, 100387. 41 Tang W S, Yang X Q, Tian C B, et al. Journal of Aeronautical Mate-rials, 2022, 42(1), 59 (in Chinese). 唐文珅, 杨新岐, 田超博, 等.航空材料学报, 2022, 42(1), 59. 42 Yang X Q, Tian C B, Tang W S, et al. MW Metal Forming, 2022(6), 1 (in Chinese). 杨新岐, 田超博, 唐文珅, 等.金属加工(热加工), 2022(6), 1. 43 Avery D Z, Rivera O G, Mason C J T, et al. JOM, 2018, 70, 2475. 44 Huang K, Logé R E. Materials and Design, 2016, 111, 548. 45 Montheillet F, Cohen M, Jonas J J. Acta Metallurgica, 1984, 32(11), 2077. 46 Yu H Z, Mishra R S. Materials Research Letters, 2021, 9(2), 71. 47 Srivastava M, Rathee S, Maheshwari S, et al. Critical Reviews in Solid State and Materials Sciences, 2019, 44(5), 345. 48 Rathee S, Srivastava M, Pandey P M, et al. CIRP Journal of Manufacturing Science and Technology, 2021, 35, 560. 49 Rutherford B A, Avery D Z, Phillips B J, et al. Metals, 2020, 10(7), 947. 50 Zhu N, Avery D Z, Rutherford B A, et al. Metals, 2021, 11, 1773. 51 Anderson-Wedge K, Avery D Z, Daniewicz S R, et al. International Journal of Fatigue, 2021, 142, 105951. 52 https://www.meldmanufacturing.com. 53 Griffiths R J, Perry M E J, Sietins J M, et al. Journal of Materials Engineering and Performance, 2018, 28, 648. 54 Gottwald R B, Griffiths R J, Petersen D T, et al. Accounts of Materials Research, 2021, 2, 780. 55 Griffiths R J, Petersen D T, Garcia D, et al. Applied Sciences-Basel, 2019, 9(17), 3486. 56 Martin L P, Luccitti A, Walluk M. International Journal of Advanced Manufacturing Technology, 2021, 118(3-4), 759. 57 Qi S, Wen Q, Ji S D, et al. International Journal of Advanced Manufacturing Technology, 2019, 105(11), 4761. 58 Zuo Y Y, Liu H, Gong P. et al. Acta Metallurgica Sinica-EnglishLetters, 2021, 34(10), 1345. 59 Martin L P, Luccitti A, Walluk M. The International Journal of Advanced Manufacturing Technology, 2022, 121, 2365. 60 Chou K, Eff M, Cox C D, et al. Data in Brief, 2022, 41, 107862.