Please wait a minute...
材料导报  2024, Vol. 38 Issue (5): 23080253-7    https://doi.org/10.11896/cldb.23080253
  特种工程材料 |
轻骨料水泥基多功能吸波材料的制备及有限元分析
吴子豪1,2, 苏荣华3, 马超1, 解帅1, 冀志江1,2,*, 王英翔1, 王静1
1 中国建筑材料科学研究总院绿色建筑材料国家重点实验室,北京 100024
2 武汉理工大学材料科学与工程学院,武汉 430070
3 军事科学院国防工程研究院,北京 100850
Preparation and Finite Element Analysis of Lightweight Aggregate Cement-based Multi-function Absorbing Materials
WU Zihao1,2, SU Ronghua3, MA Chao1, XIE Shuai1, JI Zhijiang1,2,*, WANG Yingxiang1, WANG Jing1
1 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, China
2 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
3 Defense Engineering Institute, AMS, Beijing 100850, China
下载:  全 文 ( PDF ) ( 20145KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为分析轻骨料种类及粒径对吸波材料性能的影响,采用五种从微米级至毫米级粒径的轻骨料制备了轻质水泥基吸波材料,测试其电磁参数和反射损耗(RL),采用有限元分析方法构建了二维截面模型,模拟吸波材料内部电磁场分布情况,并测试了吸波材料的力学性能和导热系数。结果表明,增加轻骨料掺量和增大粒径可改善水泥基材料的阻抗匹配性能,提升平均RL,拓宽有效吸波频宽,吸收峰向高频移动。20 mm厚度时,吸波材料在低频1.2 GHz处最优RL为-29.1 dB,在较高频5.9 GHz处最优RL为-20.9 dB,有效吸波频宽最宽可达14.49 GHz。有限元模拟结果表明,轻骨料可改变电磁波传输方向,增加电磁波损耗途径,相邻骨料之间可产生较强损耗,其次是在骨料内部产生损耗,这为骨料种类、粒径选择与轻质吸波材料设计提供理论基础。增大轻骨料粒径会降低吸波材料的密度、力学强度与导热系数,使其吸波效能更好,保温效果更优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴子豪
苏荣华
马超
解帅
冀志江
王英翔
王静
关键词:  骨料粒径  吸波材料  反射损耗  有限元分析  力学性能  导热系数    
Abstract: In order to analyze the effects of lightweight aggregate type and particle size on the properties of wave absorbing materials, five kinds of lightweight aggregate with particle sizes ranging from micron to millimeter were used to prepare lightweight cement-based absorbing materials, and their electromagnetic parameters and reflection loss (RL) were tested. 2D cross-section model was constructed by finite element analysis method to simulate the electromagnetic field distribution inside the wave absorbing materials. The mechanical properties and thermal conductivity of the wave absorbing materials were tested. The results show that the impedance matching performance of cement-based materials and the average RL are improved via increasing the content of lightweight aggregate and particle size, as well as broaden the effective absorption bandwidth, and the absorption peak is moved to high frequency. When the thickness is 20 mm, the optimal RL of the wave absorbing material is -29.1 dB at the low frequency of 1.2 GHz and -20.9 dB at the high frequency of 5.9 GHz, and the maximum effective absorbing bandwidth can reach 14.49 GHz. The finite element simulation results show that the electromagnetic wave transmission direction can be changed by adding lightweight aggregate, the electromagnetic wave loss path is increased, and a strong loss is produced between neighboring aggregates, then the loss occurs inside aggregate, which provides a theoretical basis for the selection of aggregate type, particle size and the design of lightweight absor-bing materials. The density, mechanical strength and thermal conductivity of wave absorbing materials are reduced via increasing the particle size of lightweight aggregate, the wave absorption efficiency and the heat preservation effect are better.
Key words:  aggregate size    absorbing materials    reflection loss    finite element analysis    mechanical property    thermal conductivity
出版日期:  2024-03-10      发布日期:  2024-03-18
ZTFLH:  TB34  
基金资助: 绿色建筑材料国家重点实验室探索项目(ZA-79)
通讯作者:  *冀志江,工学博士,教授级高级工程师,博士研究生导师,享受国务院政府特殊津贴专家。中国建筑材料科学研究总院绿色建筑材料国家重点实验室学术带头人。兼任中国建筑材料联合会生态环境建材分会副理事长,中国硅酸盐学会房建材料分会秘书长,建材行业环境友好与有益健康建筑材料标准化技术委员会主任委员,中国复合材料学会矿物复合材料专业委员会副主任委员,复旦大学、河北工业大学兼职导师等职。自2000年至今,主要致力于环境功能建材及其评价技术研究,开拓并发展环境功能建材新兴行业和生态环境建材新学科方向。承担国家自然科学基金、国家重点研发计划、国家科技支撑计划、863计划等各类科研课题20余项,获国家技术发明二等奖1项,获授权专利60余项,主持制定国家及行业标准50余部,发表学术论文160余篇,其中SCI/EI收录50余篇,出版专著5部。 jzj1618@126.com   
作者简介:  吴子豪,2018年6月、2021年7月分别于青岛科技大学和中国建筑材料科学研究总院获得工学学士学位和硕士学位。现为武汉理工大学材料科学与工程学院博士研究生,在冀志江教授的指导下进行研究。目前主要研究领域为电磁波防护材料。
引用本文:    
吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
WU Zihao, SU Ronghua, MA Chao, XIE Shuai, JI Zhijiang, WANG Yingxiang, WANG Jing. Preparation and Finite Element Analysis of Lightweight Aggregate Cement-based Multi-function Absorbing Materials. Materials Reports, 2024, 38(5): 23080253-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080253  或          http://www.mater-rep.com/CN/Y2024/V38/I5/23080253
1 Hu J, Liu Y, Jiang J, et al. Composite Structures, 2023, 312, 116886.
2 Liu T T, Cao M Q, Fang Y S, et al. Journal of Materials Science & Technology, 2022, 112, 329.
3 Xie S, Ji Z, Zhu L, et al. Journal of Building Engineering, 2020, 27, 100963.
4 Bian P, Zhan B, Gao P, et al. Construction and Building Materials, 2023, 364, 129903.
5 Xie S, Ji Z, Li B, et al. Composites Part A: Applied Science and Manufacturing, 2018, 114, 360.
6 Xie S, Jia Z Y, Cao Y X, et al. China Concrete and Cement Products, 2022(9), 62 (in Chinese).
解帅, 贾治勇, 曹延鑫, 等. 混凝土与水泥制品, 2022(9), 62.
7 Zhang X Z, Zheng P Q, Tao W H, et al. Journal of the Chinese Ceramic Society, 2023, 51(5), 1363 (in Chinese).
张秀芝, 郑沛祺, 陶文宏, 等. 硅酸盐学报, 2023, 51(5), 1363.
8 Jia X F, Chang Q, Cao X F, et al. Journal of Functional Materials, 2022, 53(12), 12028(in Chinese).
贾雪菲, 常乾, 曹雪芳, 等. 功能材料, 2022, 53(12), 12028.
9 Nam I W, Choi J H, Kim C G, et al. Composite Structures, 2018, 206, 439.
10 Ozturk M, Karaaslan M, Akgol O, et al. Cement and Concrete Research, 2020, 136, 106177.
11 Huang W, Wang X, Li Y Q, et al. Materials Reports, 2023, 37(7), 19 (in Chinese).
黄威, 王轩, 李永清, 等. 材料导报, 2023, 37(7), 19.
12 Ghosh S K, Nath K, Nath C S, et al. Chemical Engineering Journal Advances, 2023, 15, 100505.
13 Li J, Li H, Gao G, et al. Ceramics International, 2022, 48(24), 36029.
14 Deng S, Ai H M, Wang B M. Construction and Building Materials, 2022, 321, 126398.
15 Jung M, Lee Y S, Hong S G, et al. Cement and Concrete Research, 2020, 131, 106017.
16 Stefaniuk D, Sobótka M, Jarczewska K, et al. Cement and Concrete Composites, 2022, 134, 104732.
17 He Y, Lu L, Sun K, et al. Cement and Concrete Composites, 2018, 92, 1.
18 Zhao Q X, Zhang J R, Zhao R R. Journal of the Ceramic Society, 2011, 39(12), 2013 (in Chinese).
赵庆新, 张津瑞, 赵冉冉. 硅酸盐学报, 2011, 39(12), 2013.
19 Guan H, Liu S, Duan Y, et al. Cement and Concrete Composites, 2007, 29(1), 49.
20 Wang Z, Wang Z, Ning M. Construction and Building Materials, 2020, 259, 119863.
21 Li B, Ji Z J, Xie S, et al. Journal of Materials Science: Materials in Electronics, 2019, 30(13), 12416.
22 Liu B Y, Duan Y P, Zhang Y F, et al. Materials & Design, 2011, 32(5), 3017.
23 Tian K, Ding Q J, Hu S G. Journal of Building Materials, 2010, 13(3), 295 (in Chinese).
田焜, 丁庆军, 胡曙光. 建筑材料学报, 2010, 13(3), 295.
24 Ciuchi I V, Olariu C S, Mitoseriu L. Materials Science and Engineering: B, 2013, 178(19), 1296.
25 Sihvola A H, Alanen E. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(4), 679.
26 Wang X, Li Q, Lai H, et al. Composites Part B: Engineering, 2022, 242, 110071.
27 Jacobs L J, Owino J O. Journal of Engineering Mechanics, 2000, 126(11), 1124.
28 Mohseni H, Ng C T. Structural Health Monitoring, 2018, 18(1), 303.
29 Gao C, Sun B, Zhang Y. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272, 107757.
30 Gao X, Wang J, Li X. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 224, 378.
31 Bora P J, Porwal M, Vinoy K J, et al. Composites Part B: Engineering, 2018, 134, 151.
32 Ding X, Huang Y, Li S, et al. Journal of Alloys and Compounds, 2016, 689, 208.
33 Cheon J, Lim S J, Kim M. Composites Science and Technology, 2020, 200, 108442.
34 Zhang C M. Stduy on particle size effect of concrete aggregate via mechanical experiments and peridynamics, Master's Thesis, Qingdao University of Technology, China, 2022 (in Chinese).
张晨明. 基于力学实验与近场动力学的混凝土骨料粒径效应研究. 硕士学位论文, 青岛理工大学, 2022.
35 Zhu L H, Liu H L, Han W. Materials Reports, 2023, 37(12), 117 (in Chinese).
朱丽华, 刘海林, 韩伟.材料导报, 2023, 37(12), 117.
36 Chen G, Li F, Geng J, et al. Construction and Building Materials, 2021, 294, 123572.
37 Jaya N A, Yun M L, Cheng Y. Construction and Building Materials, 2020, 247, 118641.
[1] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[2] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[3] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[4] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[5] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[6] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[7] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[8] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[9] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[10] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[11] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[12] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[13] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[14] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[15] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed