Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060068-6    https://doi.org/10.11896/cldb.22060068
  无机非金属及其复合材料 |
掺氢氧化钙对超高强混凝土力学性能影响的机理
朋改非1,*, 张贵1, 左雪宇1,2, 丁宏3,4, 陈喜旺3, 王海迪4, 刘新建4
1 北京交通大学土木建筑工程学院,北京 100044
2 中建三局集团北京有限公司,北京 100162
3 北京建工新型建材有限责任公司,北京 100015
4 北京建工恒均工程检测有限公司,北京 102615
Mechanism for the Influence of Added Hydrated Lime on Mechanical Properties of Ultra-high Strength Concrete
PENG Gaifei1,*, ZHANG Gui1, ZUO Xueyu1,2, DING Hong3,4, CHEN Xiwang3, WANG Haidi4, LIU Xinjian4
1 Faculty of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
2 China Construction Third Bureau Group Beijing Limited Liability Company, Beijing 100162, China
3 Beijing Construction Engineering Group, Advanced Construction Materials Limited Liability Company, Beijing 100015, China
4 Beijing Construction Engineering Group, Hengjun Engineering Detection Limited Liability Company, Beijing 102615, China
下载:  全 文 ( PDF ) ( 5688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 鉴于含矿物掺合料较多的超高性能混凝土(Ultra-high performance concrete,UHPC)中火山灰反应所需氢氧化钙含量不足的状况,在配制超高强混凝土(UHPC基体)时掺加氢氧化钙,研究其对超高强混凝土力学性能的影响机理。结果表明,超高强混凝土力学性能的改善源于掺入的氢氧化钙与矿物掺合料中的SiO2发生火山灰反应生成C-S-H及C-A-S-H凝胶,且在组合养护(90 ℃热水养护2 d+250 ℃干热养护3 d)下,部分C-(A)-S-H凝胶向托勃莫来石与硬硅钙石晶体转变,改善了超高强混凝土的微观结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朋改非
张贵
左雪宇
丁宏
陈喜旺
王海迪
刘新建
关键词:  超高强混凝土  氢氧化钙  力学性能  机理    
Abstract: Based on the drawback of insufficient calcium hydroxide content required for pozzolanic reaction in ultra-high performance concrete (UHPC) incorporating high volume mineral admixtures, hydrated lime was intentionally added into the ultra-high strength concrete (matrix of UHPC) to investigate its influence on the mechanical properties of ultra-high strength concrete. The mechanism for the improvement in mechanical properties of ultra-high strength concrete should be pozzolanic reaction between hydrated lime and mineral admixtures, which formed C-S-H and C-A-S-H gels. Partial C-(A)-S-H gels were transformed into tobermorite and xonotlite crystals under combined curing (90 ℃ hot water curing for 2 d and 250 ℃ dry air heating for 3 d), which improved both the microstructure and mechanical properties of ultra-high strength concrete.
Key words:  ultra-high strength concrete    hydrated lime    mechanical property    mechanism
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51878032);北京市自然科学基金(8212013;8172036)
通讯作者:  *朋改非,北京交通大学土木建筑工程学院教授、博士研究生导师。1987年同济大学材料科学与工程系本科毕业,1992年清华大学材料科学与工程系硕士毕业,1999年香港理工大学土木与结构工程系博士毕业。目前主要从事超高性能混凝土、高性能混凝土、再生混凝土等方面的研究工作。在Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Mate-rials、《硅酸盐学报》等期刊发表论文100余篇。gfpeng@bjtu.edu.cn   
引用本文:    
朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
PENG Gaifei, ZHANG Gui, ZUO Xueyu, DING Hong, CHEN Xiwang, WANG Haidi, LIU Xinjian. Mechanism for the Influence of Added Hydrated Lime on Mechanical Properties of Ultra-high Strength Concrete. Materials Reports, 2024, 38(3): 22060068-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060068  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22060068
1 Neville A M. Properties of concrete(fifth edition), Essex, England, 2011, pp.81.
2 Taylor H F W. Cement chemistry(second edition), 1 Heron Quay, London, 1997, pp.280.
3 Kasaniya M, Thomas M D A, Moffatt E G. Cement and Concrete Research, 2021, 139, 106259.
4 Liu C, Yang L, Wang F Z, et al. Construction and Building Materials, 2020, 270, 121439.
5 Van V T A, Roßler C, Bui D D, et al. Cement and Concrete Composites, 2014, 53, 270.
6 Soliman N A, Tagnit-Hamou A. Construction and Building Materials, 2016, 125, 600.
7 Peng Y Z, Hu S G, Ding Q J. Journal of Wuhan University of Technology-Materials Science Edition, 2010, 25(2), 349.
8 Mira P, Papadakis V G, Tsimas S. Cement and Concrete Research, 2002, 32(5), 683.
9 Barbhuiya S A, Gbagbo J K, Russell M I, et al. Construction and Buil-ding Materials, 2009, 23(10), 3233.
10 Lorca P, Calabuig R, Benlloch J, et al. Materials and Design, 2014, 64, 535.
11 Gunasekara C, Sandanayake M, Zhou Z, et al. Construction and Buil-ding Materials, 2020, 253, 119205.
12 Korpa A, Kowald T, Terttin R. Cement and Concrete Research, 2009, 39(2), 69.
13 Galmarini S, Bowen P. Cement and Concrete Research, 2016, 81, 16.
14 Gallucci E, Scrivener K. Cement and Concrete Research, 2007, 37(4), 492.
15 Shen Y S, Tang M L, Shen X D. Journal of Chinese Ceramic Society, 2016, 44(2), 232(in Chinese).
沈裕盛, 唐明亮, 沈晓冬. 硅酸盐学报, 2016, 44(2), 232.
16 Li X Y, Li J, Lu Z Y, et al. Construction and Building Materials, 2020, 234, 117342.
17 Li W G, Huang Z Y, Hu G Q, et al. Construction and Building Mate-rials, 2017, 131, 767.
18 He Y J, Mao R T, Lu L N, et al. Journal of Wuhan University of Technology-Materials Science Edition, 2017, 32(3), 598.
19 Chen T F, Gao X J, Ren M. Construction and Building Materials, 2018, 158, 864.
20 Peng G F, Niu X J, Shang Y J, et al. Cement and Concrete Research, 2018, 109, 147.
21 Amnadnua K, Tangchirapat W, Jaturapitakkul C. Materials and Design, 2013, 51, 894.
22 Xu Y Z, Wu L D, Min H T, et al. China Building Materials Science & Technology, 2019, 28(3), 70(in Chinese).
许永震, 吴来帝, 敏海涛, 等. 中国建材科技, 2019, 28(3), 70.
23 Yang J. Experimental research on mechanical properties, explosive spalling behavior and its improvements of ultra-high-performance concrete with coarse aggregate exposed to high temperature. Ph. D. Thesis, Beijing Jiaotong University, China, 2017(in Chinese).
杨娟. 含粗骨料超高性能混凝土的高温力学性能、爆裂及其改善措施试验研究. 博士学位论文, 北京交通大学, 2017.
24 Huang W, Kazemi-Kamyab H, Sun W, et al. Cement and Concrete Composites, 2017, 77, 86.
25 Ma W P, Brown P W. Cement and Concrete Research, 1997, 27(8), 1237.
26 Odler I. Lea's chemistry of cement and concrete, Elsevier Science & Technology Books, Netherland, 1998, pp.241.
27 Yazici H, Deniz E, Baradan B. Construction and Building Materials, 2013, 42, 53.
28 Hiremath P H, Yaragal S C. Construction and Building Materials, 2017, 154, 72.
29 Puertas F, Palacios M, Manzano H, et al. Journal of the European Ceramic Society, 2011, 31, 2043.
30 Lin R S, Han Y, Wang X Y. Cement and Concrete Composites, 2021, 116, 103871.
31 Sugiyama D. Cement and Concrete Research, 2008, 38, 1270.
32 Wu Z M, Khayat K H, Shi C J. Cement and Concrete Research, 2017, 95, 247.
33 Sepulcre-Aguilar A, Hernandez-Olivares F. Cement and Concrete Research, 2010, 40(1), 66.
34 Yang X L, Cui C, Cui X Y, et al. Jouanl of Wuhan University of Technology-Materials Science Edition, 2014, 29(2), 298.
35 Luo Z, Ma H W, Yang J. Journal of the Chinese Ceramic Society, 2017, 45(11), 1679(in Chinese).
罗征, 马鸿文, 杨静. 硅酸盐学报, 2017, 45(11), 1679.
36 Myers R J, Lopital E, Provis J L, et al. Cement and Concrete Research, 2015, 68, 83.
37 Matsui K, Kikuma J, Tsunashima M, et al. Cement and Concrete Research, 2011, 41(5), 510.
38 Zdeb T. Construction and Building Materials, 2019, 209, 326.
39 Hu Z L, Wyrzykowski M, Griffa M, et al. Cement and Concrete Research, 2020, 134, 106104.
40 Zhao Q Y, Cui C, He B, et al. Construction and Building Materials, 2020, 237, 117660.
41 Hou J Q, Cui C, He B, et al. Journal of the Chinese Ceramic Society, 2018, 46(8), 1149(in Chinese).
侯剑桥, 崔崇, 何兵, 等. 硅酸盐学报, 2018, 46(8), 1149.
[1] 付晓辉, 李冠超, 王昱莹, 李小燕, 黄希, 刘小亮, 胡伟芳. 维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的机理[J]. 材料导报, 2024, 38(4): 22040208-6.
[2] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[3] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用空心微球制备超轻泡沫玻璃及其性能研究[J]. 材料导报, 2024, 38(4): 22090062-5.
[4] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[5] 桂晓露, 程瑄, 李芃飞, 高古辉, 孙丽娅, 易汉平. 石墨烯的分散方法及在水性环氧富锌涂料中的应用进展[J]. 材料导报, 2024, 38(3): 22060047-8.
[6] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[7] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[8] 郭耀旗, 唐敏, 马红林, 魏文猴, 王林志, 范树迁, 张祺. 预热温度对激光选区熔化成形30%SiCp/AlSi10Mg复合材料力学性能的影响[J]. 材料导报, 2024, 38(3): 22090016-7.
[9] 徐宁, 杨恒, 熊传胜, 崔征, 蒋鹏, 刘璨. 钢筋混凝土环境中负载型阻锈剂的研究进展[J]. 材料导报, 2024, 38(2): 22050296-14.
[10] 董昊良, 李化建, 杨志强, 温家馨, 黄法礼, 王振, 易忠来. 混凝土冻融破坏机理及寿命预测方法[J]. 材料导报, 2024, 38(2): 22070123-11.
[11] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[12] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[13] 周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
[14] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[15] 张健, 朱智浩, 张爽, 董闯. 高Al含量的亚稳β型Ti-Al-Mo-Nb-V系列钛合金的组织与力学性能[J]. 材料导报, 2024, 38(2): 22040297-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed