Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23120191-8    https://doi.org/10.11896/cldb.23120191
  无机非金属及其复合材料 |
植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究
杜常博1,*, 陶晗2, 易富1,3, 黄惠杰1, 程传旺1
1 辽宁工程技术大学土木工程学院,辽宁 阜新 123000
2 重庆交通大学土木工程学院,重庆 400074
3 北京京能地质工程有限公司,北京 102300
Experimental Study on Plant-derived Urease-induced Calcium Carbonate Precipitation for Immobilizing Limestone Dusts
DU Changbo1,*, TAO Han2, YI Fu1,3, HUANG Huijie1, CHENG Chuanwang1
1 College of Civil Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
2 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
3 Beijing Jingneng Geological Engineering Co., Ltd., Beijing 102300, China
下载:  全 文 ( PDF ) ( 7305KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 露天石灰石矿山的粉尘会导致空气、水和土壤污染,对人体健康和周围生态系统产生不利影响,制约着绿色矿山的建设和生产。为了解决这一问题,本工作基于酶诱导碳酸钙沉淀技术,利用大豆脲酶制备生物抑尘剂。从宏观和微观角度分析了生物抑尘剂对石灰石粉尘的固化效果,并揭示其固化机理。结果表明脲酶的活性与尿素浓度和温度密切相关,当胶结液浓度为0.8 mol·L-1时,生物抑尘剂的碳酸钙沉淀比最大,pH值为7.47,呈弱碱性。生物抑尘剂作用下的碳酸钙生成量显著提高,抑尘效率得到大幅提升。生物抑尘剂能够有效提高抗风蚀能力,在最高风速下抑尘效率达49.65%,最低风速下更是达到85.45%。此外,生物抑尘剂能有效减缓腐蚀速率,96 h达到0.020 mm/a,约为水的11.05%。脲酶诱导碳酸钙沉积(Enzyme-induced carbonate precipitation,EICP)的矿化产物主要为方解石型碳酸钙,具有充填、黏附、桥接和整体固化作用,能有效固化石灰石粉尘。研究表明EICP技术的经济性、环保性、可持续性以及对石灰石粉尘的积极影响使其成为一种具有极大潜力的解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜常博
陶晗
易富
黄惠杰
程传旺
关键词:  脲酶诱导碳酸钙沉积  生物抑尘剂  石灰石粉尘  抗风蚀测试  固化机理    
Abstract: Dust in open-pit limestone mines can cause air, water, and soil pollution, adversely affect human health and surrounding ecosystems, and restrict the construction and production of green mines. To solve this problem, based on enzyme-induced carbonate precipitation technology, soybean urease was used to prepare a biological dust suppressant. The immobilization effect of biological dust suppressant on limestone dust was analyzed from macro and micro perspectives, and its immobilization mechanism was revealed. The results showed that the activity of urease was closely related to urea concentration and temperature. When the concentration of the cementing solution was 0.8 mol·L-1, the calcium carbonate precipitation ratio of the biological dust suppressant was the largest, with a pH of 7.47, indicating weak alkalinity. The production of calcium carbonate under the action of a biological dust suppressant was significantly improved, and the dust suppression efficiency was greatly improved. The biological dust suppressant can effectively improve the anti-wind erosion ability, and the dust suppression efficiency reaches 49.65% at the highest wind speed and 85.45% at the lowest wind speed. In addition, the biological dust suppressant can effectively slow down the corrosion rate, reaching 0.020 mm/a at 96 h, which is about 11.05% of water. The mineralization products of enzyme-induced carbonate precipitation (EICP) are mainly calcite calcium carbonate, which have the functions of filling, cementation, connection, and overall immobilization, and can effectively immobilize limestone dust. Studies have shown that the economy, environmental protection, sustainability, and positive impact on limestone dust of EICP technology make it a potentially promising solution for dust suppression.
Key words:  enzyme-induced carbonate precipitation    biological dust suppressant    limestone dusts    wind erosion resistance test    curing mec-hanism
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TU458  
基金资助: 辽宁省教育厅青年基金(LJKQZ2021153);黑龙江省揭榜挂帅项目(2023ZXJ05A02)
通讯作者:  *杜常博,辽宁工程技术大学土木工程学院副教授、硕士研究生导师,主要从事环境岩土工程、土工合成材料加筋特性及尾矿加固方面的研究工作。duchangbo2839@163.com   
引用本文:    
杜常博, 陶晗, 易富, 黄惠杰, 程传旺. 植物源脲酶诱导碳酸钙沉积固化石灰石粉尘试验研究[J]. 材料导报, 2025, 39(2): 23120191-8.
DU Changbo, TAO Han, YI Fu, HUANG Huijie, CHENG Chuanwang. Experimental Study on Plant-derived Urease-induced Calcium Carbonate Precipitation for Immobilizing Limestone Dusts. Materials Reports, 2025, 39(2): 23120191-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120191  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23120191
1 Nie W, Xu C W, Peng H T,et al. Materials Reports, 2023, 37(15), 22030228(in Chinese).
聂文, 许长炜, 彭慧天, 等.材料导报, 2023, 37(15), 22030228.
2 Wang Y, Jiang Z. Case Studies in Thermal Engineering, 2021, 25, 100896.
3 Zhou Q, Qin B. Fuel, 2021, 302, 121196.
4 Zhou G, Xu Y, Wang Y, et al. Journal of Environmental Management, 2023, 343, 118181.
5 Zhan Q, Qian C, Yi H. Construction and Building Materials, 2016, 121, 437.
6 Hamdan N, Kavazanjian Jr E. Géotechnique, 2016, 66(7), 546.
7 Hu X M, Liu J D, Feng Y, et al. Environmental Research, 2023, 219, 115121.
8 Wang H X, Miao L C, Sun X H,et al. Journal of Southeast University (Natural Science Edition), 2022, 52(4), 712(in Chinese).
王恒星, 缪林昌, 孙潇昊, 等.东南大学学报(自然科学版), 2022, 52(4), 712.
9 Almajed A, Abbas H, Arab M, et al. Journal of Cleaner Production, 2020, 274, 122627.
10 Yuan P B, Zhu L, Zhong X M, et al. Rock and Soil Mechanics, 2022, 43(12), 3385(in Chinese).
原鹏博, 朱磊, 钟秀梅, 等.岩土力学, 2022, 43(12), 3385.
11 Meng H, Shu S, Gao Y, et al. Engineering Geology, 2021, 294, 106374.
12 Tian W, Li T, Jia N,et al. Materials Reports, 2022,36(15), 78(in Chinese).
田威, 李腾, 贾能, 等.材料导报, 2022, 36(15), 78.
13 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standards for geotechnical test methods (GB/T 50123-2019), China Planning Press, China, 2019 (in Chinese).
中华人民共和国住房和城乡建设部.土工试验方法标准(GB/T 50123-2019), 中国计划出版社,2019.
14 Whiffin V S, Van Passen L A, Harkes M P. Geomicrobiology Journal, 2007, 24(5), 417.
15 Putra H, Yasuhara H, Kinoshita N, et al. Crystals, 2017, 7(2), 59.
16 Jiang Q W, Huang M, Cui M J, et al. Journal of Engineering Geology, DOI:10.13544/j.cnki.jeg.2023-0070 (in Chinese).
姜启武, 黄明, 崔明娟, 等. 工程地质学报, DOI:10.13544/j.cnki.jeg.2023-0070.
17 Zhan Q, Qian C. Construction and Building Materials, 2017, 133, 73.
18 Yasuhara H, Neupane D, Hayashi K, et al. Soils and Foundations, 2012, 52(3), 539.
19 National Machinery Industry Bureau of China. Metals materials uniform corrosion methods of laboratory immersion testing (JB/T 7901-1999 ), Instrumentation Technology and Economy Institute, China, 1999(in Chinese).
中国机械工业局.金属材料实验室均匀腐蚀全浸试验方法(JB/T 7901-1999),机械工业仪器仪表综合技术经济研究所,1999.
20 Li T.Study on mechanical properties and mechanism of loessimproved by ElCP solutions with different calcium sources. Master's Thesis, Chang'an University, China, 2022 (in Chinese).
李腾. 不同钙源EICP溶液改良黄土力学性能及微观机制研究. 硕士学位论文, 长安大学, 2022.
21 Wu M, Hu X, Zhang Q, et al. Journal of Cleaner Production, 2020, 273, 123162.
22 Wu L Y, Miao L C, Sun X H, et al. Chinese Journal of Geotechnical Engineering, 2020, 42(4), 714(in Chinese).
吴林玉, 缪林昌, 孙潇昊, 等.岩土工程学报, 2020, 42(4), 714.
23 Pan L, Li Q, Zhou Y, et al. RSC advances, 2019, 9(70), 40827.
24 Wang P, Han H, Tian C, et al. Atmospheric Pollution Research, 2020, 11(6), 32.
25 Chu J, Ivanov V, Naeimi M, et al. Acta Geotechnica, 2014, 9, 277.
26 Liu L, Liu H, Xiao Y, et al. Bulletin of Engineering Geology and the Environment, 2018, 77, 1781.
27 Zhu S, Zhao Y, Hu X, et al. Powder Technology, 2021, 383, 233.
28 Barrios A M, Lippard S J. Inorganic Chemistry, 2001, 40(6), 1250.
29 Krajewska B. Journal of Advanced Research, 2018, 13, 59.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[3] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[4] 刘佳杰, 后振中, 杨庆浩, 赵秋丽. 加成型液体硅橡胶的研究及应用进展[J]. 材料导报, 2024, 38(20): 23050199-7.
[5] 龙武剑, 吴卓锐, 韦经杰, 董必钦, 张津瑞, 方长乐. 有机膦酸盐对碱矿渣胶凝材料铅离子固化性能的提升作用[J]. 材料导报, 2023, 37(13): 21110095-8.
[6] 田威, 李腾, 贾能, 贺礼, 张雪珂, 张旭东. 木钙源EICP溶液固化路基黄土性能研究[J]. 材料导报, 2022, 36(15): 21050040-8.
[7] 王景龙, 王旭, 李建东, 张延杰, 蒋代军, 刘德仁, 李迅. F1离子固化剂加固试验黄土的物理力学特性变化机理[J]. 材料导报, 2021, 35(8): 8070-8075.
[8] 李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 王景龙, Steven. F1离子固化剂加固试验黄土机理及强度特性研究[J]. 材料导报, 2021, 35(6): 6100-6106.
[9] 蹇守卫, 赵红晨, 王亮, 李宝栋, 高文斌, 黄伟超. 重度铜污染土壤制备轻集料的固化机理研究[J]. 材料导报, 2021, 35(18): 18104-18108.
[10] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(Z2): 273-277.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed