Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23120218-7    https://doi.org/10.11896/cldb.23120218
  无机非金属及其复合材料 |
OPC-SAC复合胶凝体系对超高性能混凝土性能的影响
王艳1,2,*, 李伊岚1, 杨子凡1, 常天风1, 孙琳琳1
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 绿色建筑全国重点实验室,西安 710055
Effect of OPC-SAC Composite Cementitious System on the Properties of Ultra-high Performance Concrete
WANG Yan1,2,*, LI Yilan1, YANG Zifan1, CHANG Tianfeng1, SUN Linlin1
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 State Key Laboratory of Green Building, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 16849KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对超高性能混凝土(UHPC)在加固与修复工程中存在凝结时间长、早期强度发展缓慢等问题,将硫铝酸盐水泥(SAC)掺入超高性能混凝土中,研究了不同复配比例下OPC-SAC复合胶凝体系对UHPC力学性能与工作性能的影响,采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)及等温量热仪分别从水化产物的微观形貌、水化速率和水化放热量等方面分析了OPC-SAC复合胶凝体系对UHPC水化过程与作用机理的影响。结果表明:SAC的掺入可大幅度降低UHPC的凝结时间和坍落度,且与基准组相比,当SAC掺量为10%时UHPC的初凝时间减少了329 min,终凝时间减少了365 min,坍落度下降20 mm;随着SAC掺量的增加,UHPC的1 d抗压强度呈现先增大后减小的趋势,当掺入10%的SAC时,UHPC的1 d强度最高,且相比基准组高4.6%;掺入SAC后,UHPC的早期水化速率和放热量均高于基准组,且UHPC早期水化速率和放热量随着SAC掺量的增加均呈现增大的趋势;SAC的掺入使得复合胶凝体系内AFt的生成量增加,而Ca(OH)2的生成量减小,短时间内水化产物的生成量过多且分布不均匀,影响了混凝土强度。研究结果可为UHPC在加固与修复工程中的可喷射性提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳
李伊岚
杨子凡
常天风
孙琳琳
关键词:  超高性能混凝土  复合胶凝体系  凝结时间  水化过程    
Abstract: Based on the problems such as long setting time and slow development of early strength of ultra-high performance concrete (UHPC) in reinforcement and restoration engineering, sulphoaluminate cement (SAC) was incorporated into ultra-high performance concrete, the effect of OPC-SAC composite cementitious system on the mechanical and working properties of UHPC under different compounding ratios were studied. Scanning electron microscopy (SEM), X-ray diffractometry (XRD) and isothermal calorimetry were used to analyze the effects of OPC-SAC composite cementitious system on the hydration process and mechanism of UHPC in terms of the microstructure of the hydration products, the hydration rate and the hydration heat release, respectively. Experimental results showed that the significant decrease in UHPC setting time and fluidity was due to the incorporation of SAC. When the SAC content was 10%, the initial setting time of UHPC was 329 min less than that of the baseline group, the final setting time was reduced by 365 min, and the slump was decreased by 20 mm. The 1 d compressive strength of UHPC increased first and then decreased with the increase of SAC content, when 10%SAC was added, the 1 d strength of UHPC was the highest, and 4.6% higher than that of the base group. After the addition of SAC, the early hydration rate and heat release of UHPC were higher than that of the reference group, and the hydration rate and heat release of UHPC in early stage showed an increasing trend with the increase of SAC content. The incorporation of SAC increased the generation of AFt and decreased the generation of Ca(OH)2 in the composite cementitous system, resulting in excessive generation and uneven distribution of hydration products within a short time, which affected the strength of UHPC. The output of this work can provide a theoretical basis for sprayability of UHPC in restoration and reinforcement engineering.
Key words:  ultra-high performance concrete    compound cement system    setting time    hydration process
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TU528  
基金资助: 国家优秀青年科学基金(52222806);陕西省杰出青年科学基金(2022JC-20)
通讯作者:  *王艳,西安建筑科技大学教授、博士研究生导师。主要从事隧道与地下工程结构耐久性领域的研究工作,包括一般地质环境混凝土衬砌耐久性、高地热环境混凝土衬砌耐久性、隧道衬砌损伤的智能感知技术等。wangyanwjx@126.com   
引用本文:    
王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
WANG Yan, LI Yilan, YANG Zifan, CHANG Tianfeng, SUN Linlin. Effect of OPC-SAC Composite Cementitious System on the Properties of Ultra-high Performance Concrete. Materials Reports, 2025, 39(2): 23120218-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120218  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23120218
1 Shao X D, Qiu M H, Yan B F,et al. Materials Reports, 2017, 31(23), 33 (in Chinese).
邵旭东, 邱明红, 晏班夫, 等. 材料导报, 2017, 31(23), 33.
2 Wang D H, Shi C J, Wu L M.Bulletin of the Chinese Ceramic Society, 2016, 35(1), 141 (in Chinese).
王德辉, 史才军, 吴林妹. 硅酸盐通报, 2016, 35(1), 141.
3 Yang Y, Chen R, Huang Q W,et al. Journal of Ningxia University(Natural Science Edition), 2018, 39(3), 227 (in Chinese).
杨艳, 陈荣, 黄卿维, 等.宁夏大学学报(自然科学版), 2018, 39(3), 227.
4 Feng Y. Experimental analysis and Application Research of UHPC. Master's Thesis, Shanghai Institute of Technology, China, 2016 (in Chinese).
冯毅. 超高性能混凝土的试验分析及应用研究. 硕士学位论文, 上海应用技术大学, 2016.
5 Luo B. Effects of accelerators on the workability mechanical properties and microstructure of ultra-high performance concrete. Master's Thesis, Xiangtan University, China, 2021 (in Chinese).
罗彪. 速凝剂对UHPC工作性能、力学性能及微观结构的影响. 硕士学位论文,湘潭大学, 2021.
6 Yang L Y, Tian J T, Yang Y B, et al.Tunnel Construction, 2017, 37(5), 543(in Chinese).
杨力远, 田俊涛, 杨艺博, 等.隧道建设, 2017, 37(5), 543.
7 Li J, Huang J L, Yang M C,et al. Construction Technology, 2017, 46(6), 69 (in Chinese).
李静, 黄建良, 杨明灿, 等.施工技术, 2017, 46(6), 69.
8 Lin X L, Su D L, Hu Z W,et al. Concrete, 2023(2), 100(in Chinese).
林祥玲, 苏敦磊, 胡振文, 等.混凝土, 2023(2), 100.
9 Gao X J.Journal of Wuhan University of Technology (Materials Science), 2009(S1),200.
10 Cai G C, Zhao J.KSCE Journal of Civil Engineering, 2016, 20, 2832.
11 Gao W M. Study on preparation and properties of sulphoaluminate cement mortar. Master's Thesis, University of Jinan, China, 2018 (in Chinese).
高为民. 硫铝酸盐水泥基修补砂浆制备与性能研究. 硕士学位论文, 济南大学, 2018.
12 Qian J, You C, Wang Q, et al.Construction and Building Materials, 2014, 68, 307.
13 Wang Z P, Zhao Y T, Xu L L.Journal of South China University of Technology(Natural Science Edition), 2018, 46(7), 30 (in Chinese).
王中平, 赵亚婷, 徐玲琳.华南理工大学学报(自然科学版), 2018, 46(7), 30.
14 Li W, Wang G M, Jiang Y,et al. Materials Reports, 2014, 28(S2), 407 (in Chinese).
李伟, 王高明, 江芸, 等.材料导报, 2014, 28(S2), 407.
15 Janotka, Krajci L, Ray A, et al. Cement and Concrete Research, 2003, 33(4), 489.
16 Yang Y. Effect of the additive with sulphoaluminate cement on early strength of concrete. Master's Thesis,Chongqing University, China, 2019 (in Chinese).
杨云. 外掺硫铝酸盐水泥对混凝土早期强度影响研究. 硕士学位论文, 重庆大学, 2019.
17 Wei J.Journal of Functional Materials, 2021, 52(8), 8211 (in Chinese).
魏婧.功能材料, 2021, 52(8), 8211.
18 Qian Y F,Yang D Y,Xia Y H, et al. Journal of Materials Science and Engineering, 2023, 41(2), 260 (in Chinese).
钱云峰, 杨鼎宜, 夏旸昊, 等. 材料科学与工程学报, 2023, 41(2), 260.
19 China Association for Engineering Construction Standardization. Standard for test method of ultra-high performance concrete(T/CECS 864-2021), China Architecture and Building Press, China, 2021 (in Chinese).
中国工程建设标准化协会. 超高性能混凝土试验方法(T/CECS 864-2021), 中国建筑工业出版社, 2021.
20 Yang G, Wu T, Zhu S H,et al. Brick-Tile, 2018(9), 34 (in Chinese).
杨光, 吴腾, 朱少华, 等.砖瓦, 2018(9), 34.
21 Yang Q, Zhang X Z, Liu D,et al. Materials Reports, 2018, 32(S2), 517 (in Chinese).
杨清, 张秀芝, 刘迪, 等.材料导报, 2018, 32(S2), 517.
22 Li C X, Xia Y H, Wang S J, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(5), 1630 (in Chinese).
李传习, 夏雨航, 王圣杰, 等.硅酸盐通报, 2023, 42(5), 1630.
23 Hou S L. Research on the hydration characteristics of the silicate-sulphoaluminate compound system cement. Master's Thesis, Beijing University of Technology, China ,2005 (in Chinese).
侯淑玲. PC-CSA复合体系水泥的水化特性研究. 硕士学位论文, 北京工业大学, 2005.
24 Zhu H Y. Effect of alkali and curing conditions on properties of sulphoaluminate cement. Master's Thesis,Yangzhou University, China, 2022 (in Chinese).
朱航宇. 碱及养护条件对硫铝酸盐水泥性能的影响. 硕士学位论文, 扬州大学, 2022.
25 Hargis C W, Telesca A, Monteiro P J M.Cement and Concrete Research, 2014, 65,15.
26 Ma C, He J, Qin T, et al.Construction and Building Materials, 2020, 248, 118670.
27 Qian J S, Yu J C, Sun H Q, et al.Journal of the Chinese Ceramic Society, 2017, 45(11), 1569 (in Chinese).
钱觉时, 余金城, 孙化强, 等.硅酸盐学报, 2017, 45(11), 1569.
28 Hargis C W, Kirchheim A P, Monteiro P J M, et al. Cement and Concrete Research, 2013, 48, 105.
29 Song M, Wang C, Cui Y, et al.Advances in Civil Engineering, 2021, 2021, 1.
30 Wang P M, Fan S H, Xu L L, et al.Cement, 2017(3), 13 (in Chinese).
王培铭, 范胜华, 徐玲琳,等.水泥, 2017(3), 13.
31 Saout G, Lothenbach B, Hori A, et al. Cement and Concrete Research, 2013, 43, 81.
32 Zhang J B, Zhang W S, Wu C L, et al.Cement, 2011(5), 1 (in Chinese).
张建波, 张文生, 吴春丽, 等.水泥, 2011(5), 1.
33 Li W, YU J, MA S, et al.Ceramics Silikaty, 2018, 62(4), 1.
34 Pichler C, Lackner R.Construction and Building Materials, 2020, 231(2), 117107.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[3] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[4] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[5] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[6] 谭盐宾, 李林香, 杨珍珍, 邢梓达, 林炘恺, 葛昕, 杨鲁, 元强. 化学活化方法对磨细火山岩弃渣-水泥复合胶凝体系的影响[J]. 材料导报, 2024, 38(22): 24030103-7.
[7] 仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
[8] 朱文超, 张雷, 张亚洲, 李明清, 张建峰, 闵凡路. 碱性速凝剂对盾构壁后注浆浆体性能影响及微观机理研究[J]. 材料导报, 2024, 38(19): 23040077-7.
[9] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[10] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[11] 刘雄飞, 王楠, 郝逸飞, 李辉. 磷酸镁水泥基帆布力学与微观性能研究[J]. 材料导报, 2024, 38(17): 23090003-6.
[12] 陈嘉伟, 张芸侨, 陈卓凡, 刘智, 李军, 卢忠远, 赖振宇. Mg(OH)2对磷酸镁水泥水化过程及性能的影响[J]. 材料导报, 2024, 38(17): 24010085-7.
[13] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[14] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[15] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed