Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23040077-7    https://doi.org/10.11896/cldb.23040077
  无机非金属及其复合材料 |
碱性速凝剂对盾构壁后注浆浆体性能影响及微观机理研究
朱文超1, 张雷2, 张亚洲2, 李明清3, 张建峰3, 闵凡路1,*
1 河海大学土木与交通学院,南京 210024
2 中交隧道工程局有限公司,北京 100102
3 河海大学力学与材料学院,南京 211100
Influence of Alkaline Accelerators on Performance of Backfill Grouting in Shield Engineering and Its Micro-mechanism
ZHU Wenchao1, ZHANG Lei2, ZHANG Yazhou2, LI Mingqing3, ZHANG Jianfeng3, MIN Fanlu1, *
1 College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, China
2 CCCC Tunnel Engineering Co., Ltd., Beijing 100102, China
3 College of Mechanics and Materials, Hohai University, Nanjing 211100, China
下载:  全 文 ( PDF ) ( 20507KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在盾构隧道壁后注浆工程中,选择合适的速凝剂,缩短壁后注浆浆体(浆体)的凝结时间,对控制地层沉降和管片上浮至关重要。采用Na2CO3和Li2CO3两种碱性速凝剂配制壁后注浆,分析了两者对浆体凝结时间、流动度经时损失和强度的影响规律及微观机制。结果表明:两类速凝剂均能明显缩短浆体的凝结时间,提高浆体强度,但同时导致浆体流动度经时损失加快。添加3%Na2CO3、0.5%Li2CO3分别使浆体凝结时间缩短至6.5 h和8 h,2.5 h后浆体流动度保持在220 mm,浆体14 d强度为3.8 MPa,相比未添加速凝剂浆体的强度提高30%以上。微观结构分析表明,碱性速凝剂通过与石膏和CH晶体反应,促进水泥矿物C3A和C3S水化,缩短了浆体的凝结时间;此外,碱性速凝剂促使水泥水化产生水滑石、方解石,并激发粉煤灰生成C-A-S-H,均使浆体结构更为致密,进而提高其后期强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱文超
张雷
张亚洲
李明清
张建峰
闵凡路
关键词:  壁后注浆  碱性速凝剂  凝结时间  流动度经时损失  反应机理    
Abstract: Appropriate accelerators were selected to reduce the setting time of grouting slurry, thereby controlling ground settlement and minimizing early segment flotation in backfill grouting of shield projects. Two typical alkaline accelerators, Na2CO3 and Li2CO3, were utilized in the preparation of backfill grouting, and their effects on setting time, fluidity loss, and slurry strength were analyzed. Experimental results demonstrated that both types of accelerators significantly reduced the setting time of the slurry and increased its strength. However, the loss of slurry fluidity over time also accelerated. By adding 3%Na2CO3 and 0.5%Li2CO3, the setting time was reduced to 6.5 hours and 8 hours, respectively, while the fluidity maintained at 220 mm after 2.5 hours. After 14 days, the slurry strength reached 3.8 MPa, which was more than 30% higher than that of the slurry without accelerators. Microstructure analysis revealed that the alkaline accelerators promoted the hydration of cement minerals C3A and C3S by reacting with gypsum and CH crystals, thus shortening the setting time of the slurry. Additionally, alkaline accelerators promoted the hydration of cement to produce hydrotalcite and calcite, and stimulated the formation of C-A-S-H from fly ash, all of which enhanced the density of slurry structure and thus improved later strength.
Key words:  backfill grouting    alkaline accelerator    setting time    fluidity loss over time    reaction mechanism
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU528.31  
基金资助: 国家自然科学基金(52378394;52078189);中央高校基本科研业务费专项资金(B230201037)
通讯作者:  *闵凡路,通信作者,河海大学土木与交通学院教授、硕士研究生导师。2012年河海大学岩土工程专业博士毕业。目前主要从事水下盾构隧道、城市地铁、环境岩土等领域中岩土工程、环境工程与材料交叉方向的研究工作。发表论文70余篇,包括Tunnelling and Underground Space Technology、Transactions of Nonferrous Metals Society、Applied Clay Science、Journal of Cleaner Production等,授权国家发明专利20余项。minfanlu@hhu.edu.cn   
作者简介:  朱文超,2021年6月毕业于河海大学,获工学学士学位。现为河海大学土木与交通学院硕士研究生。在闵凡路教授的指导下进行研究。目前主要研究方向有盾构隧道开挖面稳定、壁后注浆材料等。
引用本文:    
朱文超, 张雷, 张亚洲, 李明清, 张建峰, 闵凡路. 碱性速凝剂对盾构壁后注浆浆体性能影响及微观机理研究[J]. 材料导报, 2024, 38(19): 23040077-7.
ZHU Wenchao, ZHANG Lei, ZHANG Yazhou, LI Mingqing, ZHANG Jianfeng, MIN Fanlu. Influence of Alkaline Accelerators on Performance of Backfill Grouting in Shield Engineering and Its Micro-mechanism. Materials Reports, 2024, 38(19): 23040077-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040077  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23040077
1 Ye F, Mao J H, Ji M, et al. Tunnel Construction, 2015, 35(8), 739 (in Chinese).
叶飞, 毛家骅, 纪明, 等. 隧道建设, 2015, 35(8), 739.
2 Zhang F X, Zhu H H, Fu D M. Shield tunnelling method, China Communication Press, China, 2004, pp. 383 (in Chinese).
张凤祥, 朱合华, 傅德明. 盾构隧道, 人民交通出版社, 2004, pp. 383.
3 Lai J X, Zhou H, Wang K, et al. Tunnelling and Underground Space Technology, 2020, 97, 103220.
4 Wu H N, Shen S L, Liao S M, et al. Tunnelling and Underground Space Technology, 2015, 50(8), 317.
5 Ye F, Xia T H, Ying K C, et al. Chinese Journal of Geotechnical Engineering, 2022, 44(12), 2225 (in Chinese).
叶飞, 夏天晗, 应凯臣, 等. 岩土工程学报, 2022, 44(12), 2225.
6 Mao J H, Yuan D J, Jin D L, et al. Construction and Building Materials, 2020, 265(10), 120281.
7 Liang J H. Study on the proportion of backfill-grouting materials and grout deformation properties of shield tunnel. Master's Thesis, Hohai University, China, 2006 (in Chinese).
梁精华. 盾构隧道壁后注浆材料配比优化及浆体变形特性研究. 硕士学位论文, 河海大学, 2006.
8 Zhou H. Development and application of anti-seepage grouting material behind the lining wall of urban subway. Master's Thesis, Shandong University, China, 2020 (in Chinese).
周恒. 城市地铁衬砌壁后防渗注浆材料研发与应用. 硕士学位论文, 山东大学, 2020.
9 Jiang M F, Lyu X J. Bulletin of the Chinese Ceramic Society, 2014, 33(10), 2527 (in Chinese).
姜梅芬, 吕宪俊. 硅酸盐通报, 2014, 33(10), 2527.
10 Dong X L, Geng D X, Jiang Y L, et al. Construction Technology, 2021, 50(15), 32 (in Chinese).
董小龙, 耿大新, 蒋亚龙, 等. 施工技术, 2021, 50(15), 32.
11 Zhu W, Lu K J, Xing H T, et al. Tunnel Construction, 2022, 42(5), 784 (in Chinese).
朱伟, 陆凯君, 邢慧堂, 等. 隧道建设, 2022, 42(5), 784.
12 Song B H, Min F L, Zhang J F, et al. Journal of the Chinese Ceramic Society, 2022, 50(11), 2886.
13 Zhao Q, Zhang Y X, Zhao J, et al. Journal of Functional Materials, 2020, 51(6), 6114 (in Chinese).
赵青, 张艺霞, 赵军, 等. 功能材料, 2020, 51(6), 6114.
14 Yang Z, Xue R, Wang J, et al. Coal Geology & Exploration, 2020, 48(2), 134 (in Chinese).
杨柱, 薛忍, 王军, 等. 煤田地质与勘探, 2020, 48(2), 134.
15 Wang Z M, Jia L, Wang Z, et al. China Concrete, 2017(12), 58 (in Chinese).
王子明, 贾琳, 王庄, 等. 混凝土世界, 2017(12), 58.
16 Wang Z M, Wang J, Gan J Z, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(10), 3045 (in Chinese).
王子明, 王杰, 甘杰忠, 等. 硅酸盐通报, 2020, 39(10), 3045.
17 Paglia C, Wombacher F, Böhni H. Cement and Concrete Research, 2003, 33(3), 387.
18 Abdalqader A F, Jin F, Al-Tabbaa A. Construction and Building Materials, 2015, 93, 506.
19 Xiong D Y, Wang X H. Concrete admixture, Chemical Industry Press, China, 2004, pp. 143 (in Chinese).
熊大玉, 王小虹. 混凝土外加剂, 化学工业出版社, 2004, pp. 143.
20 Bernal S A, Provis J L, Myers R J, et al. Materials & Structures, 2015, 48(3), 517.
21 Cheng S C, Tu G P, Chen C, et al. New Building Materials, 2023, 50(5), 155 (in Chinese).
程晟畅, 涂高鹏, 陈成, 等. 新型建筑材料, 2023, 50(5), 155.
22 Chen J, Hu X M, Li B X. Cement Project, 2005(3), 13(in Chinese).
陈娟, 胡晓曼, 李北星. 水泥工程, 2005(3), 13.
23 Chen D C, Cheng C, Huang Z Y. Journal of Railway Science and Engineering, 2015, 12(5), 1074 (in Chinese).
陈大川, 程超, 黄政宇. 铁道科学与工程学报, 2015, 12(5), 1074.
24 Han J G, Yan P Y. Journal of the Chinese Ceramic Society, 2010, 38(4), 608.
25 Han J G, Yan P Y. Concrete, 2010(12), 5 (in Chinese).
韩建国, 阎培渝. 混凝土, 2010(12), 5.
26 Wang T, Liu H G, Hao G, et al. Science Technology and Engineering, 2022, 22(32), 14434 (in Chinese).
王涛, 刘慧刚, 郝钢, 等. 科学技术与工程, 2022, 22(32), 14434.
27 Zhong X C, Zuo J, Liu Q W, et al. Rock and Soil Mechanics, 2008, 29(S1), 293 (in Chinese).
钟小春, 左佳, 刘泉维, 等. 岩土力学, 2008, 29(S1), 293.
28 Xu J P, Lin W S, Xu K, et al. Tunnel Construction, 2014, 34(2), 95 (in Chinese).
徐建平, 林文书, 许可, 等. 隧道建设, 2014, 34(2), 95.
29 Xu C, Zhang Z H, Chen M C, et al. Materials Reports, 2022, 36(11), 21020078 (in Chinese).
许闯, 张祖华, 陈慕翀, 等. 材料导报, 2022, 36(11), 21020078.
30 Yang K, Zhang Z L, Yang Y, et al. Materials Reports, 2019, 33(14), 2326 (in Chinese).
杨凯, 张之璐, 杨永, 等. 材料导报, 2019, 33(14), 2326.
31 Yuan B, Yu Q L, Brouwers H J H. Materials & Design, 2015, 86, 878.
32 Stein H N, Stevels J M. Journal of Applied Chemistry, 1964, 14(8), 338.
33 Wang X. Investigation of effect of sodium carbonate on properties of alkali-activated slag cement. Master's Thesis, Chongqing University, China, 2006 (in Chinese).
王新. 碳酸钠对碱矿渣水泥性能的影响研究. 硕士学位论文, 重庆大学, 2016.
34 Wang J. Effect and mechanism of lithium salt and nano nucleating agent on hydration and early strength of cement. Master's Thesis, Southeast University, China, 2018 (in Chinese).
王健. 锂盐和纳米成核剂对水泥水化和早期强度的影响及机理. 硕士学位论文, 东南大学, 2018.
35 He T S. Concrete admixture, Shaanxi Science and Technology Press, China, 2003, pp. 106 (in Chinese).
何廷树. 混凝土外加剂, 陕西科学技术出版社, 2003, pp. 106.
36 Zhang J S. Study on the regulation of ettringite morphology and its mechanism. Master's Thesis, China Building Materials Academy, China, 2017 (in Chinese).
张金山. 钙矾石形貌调控及其机理研究. 硕士学位论文, 中国建筑材料科学研究总院, 2017.
[1] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[2] 仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
[3] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[4] 皮晓琳, 李鸿鹏, 田乙然, 童应成, 倪文若, 袁藤瑞, 唐振艳. 钯催化环加成反应构建中环化合物的研究进展[J]. 材料导报, 2024, 38(12): 22110292-12.
[5] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[6] 梁李斯, 马洪月, 郭文龙, 张宇, 弥晗, 张自恒, 邢相栋. 锰基低温NH3-SCR催化剂脱除NOx的研究综述[J]. 材料导报, 2023, 37(22): 22010173-13.
[7] 刘源涛, 王琰帅, 董必钦. 偏铝酸钠激发石灰石粉的胶凝材料合成机理研究[J]. 材料导报, 2023, 37(1): 22030034-5.
[8] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[9] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[10] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[11] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[12] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[13] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[14] 陈侣存, 崔雯, 陈鹏, 李康璐, 董帆, 王法理. 宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略[J]. 材料导报, 2021, 35(21): 21001-21011.
[15] 王爱国, 王星尧, 孙道胜, 朱颖灿, 刘开伟, 经验, 管艳梅. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 13001-13010.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed