Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 20080137-8    https://doi.org/10.11896/cldb.20080137
  无机非金属及其复合材料 |
基于氧化铈的低温NH3-SCR催化剂的研究进展
李娜1,2, 陈泽东1, 王晶晶1, 张凯1, 武文斐1,3
1 内蒙古科技大学能源与环境学院,内蒙古 包头 014010
2 华北电力大学环境科学与工程学院,河北 保定 071000
3 内蒙古自治区高效洁净燃烧重点实验室,内蒙古 包头 014010
Research Progress of Cerium Oxide-based Catalysts for NH3-SCR at Low Temperature
LI Na1,2, CHEN Zedong1, WANG Jingjing1, ZHANG Kai1, WU Wenfei1,3
1 School of Energy and Environment, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China
2 School of Environmental Science and Engineering, North China Electric Power University, Baoding 071000, Hebei, China
3 Key Laboratory of Efficient and Clean Combustion, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 3901KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选择性催化还原(SCR)技术是一种成熟的工业烟气和柴油机废气脱硝技术,但是低温(特别是在200 ℃以下)的NH3-SCR催化剂目前仍没有工业化应用。近几年,很多学者将Ce基催化剂作为低温NH3-SCR催化剂,发现Ce基催化剂有优良的低温催化性能。本文对Ce基催化剂在NOx低温NH3-SCR反应中的研究进展和性能进行了综述。按照CeO2在催化剂的存在形式将铈基催化剂分为:铈基复合氧化物催化剂、负载型氧化物催化剂及CeO2作载体的催化剂三类。影响铈基复合氧化物催化剂的活性和选择性的关键因素有催化剂的活化能、比表面积、制备方法、焙烧温度、分散性、其他金属掺杂物、氧化还原性能等,本文对这些关键因素进行了系统的分析和总结。针对负载型氧化物催化剂,重点介绍了Ce基多金属氧化物的载体(Al2O3、TiO2、新型载体)及载体在低温NH3-SCR反应中的作用。CeO2作载体的催化剂,脱硝效率虽不及前两种类型的催化剂,但将金属与CeO2混合或掺杂作为共同载体的催化剂的脱硝性能和抗硫抗水性能都有显著提升,值得研究者们进一步研究,文中也进行了简要介绍。随后重点研究了低温NH3-SCR机制,包括E-R机制和L-H机制。最后,对NOx低温NH3-SCR的研究前景及未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李娜
陈泽东
王晶晶
张凯
武文斐
关键词:  低温  选择性催化还原  脱硝  氧化铈  反应机理    
Abstract: Selective catalytic reduction (SCR) is a mature NOx removal technology for industrial flue gas and diesel exhaust gas. However, it is still a challenge to develop novel low-temperature catalysts for NH3-SCR of NOx, especially at temperatures below 200 ℃. In the past few years, many studies have demonstrated the potential of cerium (Ce)-based catalysts as low-temperature catalysts for NH3-SCR of NOx, it is found that Ce-based catalyst has excellent catalytic performance at low temperature. Herein, the recent progress and performance of Ce-based catalysts for low-temperature NH3-SCR of NOx were summarized. Based on the different roles of ceria in NH3-SCR catalysts, a systematic review of the latest research progress of Ce-based catalysts in the NH3-SCR reaction is performed as the following aspects: ceria-based mixed oxides, Ce-based multi-metal oxide with support, CeO2 used as supports. The catalytic activity and selectivity of Ce-based mixed oxides catalysts are systematically analyzed and summarized in light of some key factors such as activation energy, specific surface area, morphology, crystallinity, preparation method, calcination temperature, other metal dopant/substitute, and redox property of catalysts. For Ce-based multi-metal oxide with support, the main supporter (Al2O3, TiO2 and new type supporter) and the role of supporter in NH3-SCR reaction at low temperature are mainly introduced. Although the NOx removal efficiency of CeO2 as the catalyst carrier is not as high as that of the other two types of catalysts, the catalyst mixed or doped with metal and CeO2 as the common supporter has significantly denitration performance and sulfur-resistant and water-resis-tant performance, which is worthy of further study, as this paper introduces briefly. Subsequently, NH3-SCR mechanisms at low temperature, including E-R and L-H mechanisms, were emphasized. Lastly, the perspective and future directions of low-temperature NH3-SCR of NOx were proposed.
Key words:  low temperature    selective catalytic reduction (SCR)    denitration    cerium oxide    reaction mechanism
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  X511  
基金资助: 内蒙古自治区自然科学基金(2018MS02013;2019ZD13);国家自然科学基金(51866013)
通讯作者:  wwf@imust.com   
作者简介:  李娜,2008年7月毕业于华北电力大学环境工程专业,获得硕士学位。目前是内蒙古科技大学教师,副教授,硕士研究生导师,华北电力大学在读博士。主要研究领域为电厂烟气脱硝脱碳及催化剂的制备。在研项目有国家自然基金一项、省部级项目三项。发表核心论文10余篇,其中两篇被SCI收录。
武文斐,教授,2001年7月于北京科技大学热能工程专业毕业,获得工学博士学位,内蒙古自治区高效洁净燃烧重点实验室主任,国家重点实验室矿物催化材料方向负责人。自治区“111”人才工程二层次人才,“自治区优秀科技工作者”称号获得者,自治区“草原英才”称号获得者。主要研究领域为高效洁净燃烧及催化材料的制备,长期从事矿物催化材料的研究。在研项目:主持国家自然基金一项、省部级重大项目两项。发表SCI论文10余篇。
引用本文:    
李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
LI Na, CHEN Zedong, WANG Jingjing, ZHANG Kai, WU Wenfei. Research Progress of Cerium Oxide-based Catalysts for NH3-SCR at Low Temperature. Materials Reports, 2022, 36(8): 20080137-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080137  或          http://www.mater-rep.com/CN/Y2022/V36/I8/20080137
1 Skslska K, Miller J S, Ledakowicz S. Science of the Total Environment,2010,408,3976
2 Liu C, Shi J W, Gao C, et al. Applied Catalysis A: General,2016,522,54.
3 Skalska K, Miller J S, Ledakowicz S. Science of the Total Environment,2013,7,7.
4 Li J, Chang H, Ma L, et al. Catalysis Today,2011,175,147.
5 Busca G, Lietti L, Ramis G, et al. Applied Catalysis.B: Environment,1998,18,1.
6 Heck R M. Catalysis Today,1999,53,519.
7 Liu Z M, Woo S L. Catalysis Reviews-Science and Engineering,2006,48,43.
8 Hu Y, Griffiths K, Norton P R. Surface: Science,2009,603,1740.
9 Busca G, Larrubia M A, Arrighi L, et al. Catalysis Today,2005,107,139.
10 Kang M, Kim D, Park E, et al. Applied Catalysis B Environmental,2006,68,21.
11 Shan W, Song H. Catalysis Science & Technology,2015,5,4280.
12 Fu M F, Li C T, Lu P, et al. Catalysis Science & Technology,2014,4,14.
13 Liu C, Shi J W, Gao C, et al. Applied Catalysis A: General,2016,522,54.
14 Reddy B M, Khan A, Yamada Y, et al. The Journal of Physical Chemistry B,2003,107,5162.
15 Peng Y, Li J, Chen L,et al. Environmental Science & Technology,2012,46,2864.
16 Wu Z, Jin R, Liu Y, et al. Catalysis Communications,2008,9,2217.
17 Zhu L L, Huang B, Wang W H, et al. Catalysis Communications,2011,12,394.
18 Zhang D, Zhang L, Shi L, et al. Nanoscale,2013,5,1127.
19 Eigenmann F, Maciejewski M, Baiker A. Applied Catalysis B,2006,62,311.
20 Kapteijn F, Singorejdo L, Reini A. Applied Catalysis B Environmental,1994,3,173.
21 Li L L, Sun B, Sun J F, et al. Catalysis Communication,2017,100,98.
22 Liu Z M, Yi Y, Zhang S X, et al. Catalysis Today,2013,216,76.
23 Qi G S, Yang R T, Chang R. Applied Catalysis B Environmental,2004,51,93.
24 Jampaoah D, Tur K M, Perlia V, et al. RSC Advance,2015,5,30331.
25 Qi G, Yang R T. Journal of Physical Chemistry B,2004,108,15738.
26 Han J, Meeprasert J, Maitarad P,et al. The Journal of Physical Chemistry C,2016,120(3),1523.
27 Singh P, Hegde M S. Journal of Solid State Chemistry,2008,181(12),3248.
28 Sun Y, Guo Y, Su W, et al. Transactions of Tianjin University,2017,23(1),35.
29 Guo R T, Zhen W L, Pan W G,et al. Journal of Industrial and Enginee-ring Chemistry,2014,20(4),1577.
30 Liu C, Gao G, Shi J W, et al. Catalysis Communications,2016,86,36.
31 Li S H, Huang B C, Yu C L. Catalysis Communications,2017,98,47.
32 Chang H Z, Li J H, Chen X Y, et al. Catalysis Communications,2012,27,54.
33 Liu N, Wang J Y, Wang F Y, et al. Journal of Rare Earths,2018,36(6),594.
34 Casapu M, Krocher O, Mehring M, et al. Journal of Physical Chemistry C,2010,114,9791.
35 Chen L, Yao X, Cao J, et al. Applied Surface Science,2019,476,283.
36 Chen L Q, Yuan F L, Li Z B, et al. Chemical Engineering Journal,2018,354,393.
37 Zhu Z, Liu Z, Niu H, et al. Journal of Catalysis,2001,197,6.
38 Gu T T, Liu Y, Weng X L,et al. Catalysis Communications,2010,12,310.
39 Chang H Z, Chen X Y, Li J H, et al. Environmental Science & Technology,2013,47,5294.
40 Si Z C, Weng D, Wu X D, et al. Catalysis Today,2013,201,122.
41 Yang S J, Guo Y F, Chang H Z, et al. Applied Catalysis B Environmental,2013,136,19.
42 Ye D, Ren X Y, Qu R Y,et al. Molecular Catalysis,2019,492,10.
43 Liu H, Fan Z, Sun C, et al. Applied Catalysis B: Environmental,2019,244,671.
44 Wang F, Shen B, Zhu S, et al. Fuel,2019,1,54.
45 Wang X, Duan R, Liu W, et al. Applied Surface Science,2020,510,145517.
46 Li W, Zhang C, Li X, et al. Chinese Journal of Catalysis,2018,39,1653.
47 Kijlstra W S, Brands D S, Poels E K,et al. Catalysis Today,1999,50(1),133.
48 Zhang Z P, Chen L Q, Li Z B, et al. Catalysis Science & Technology,2013,47(10),5294.
49 Chang H Z, Chen X Y, Li J H, et al. Environmental Science & Technology,2013,47(10),5294.
50 Zhang T, Qiu F, Chang H Z, et al. Catalysis Communications,2017,100,117.
51 Li X, Li Y, Deng S S, et al. Catalysis Communications,2013,40,47.
52 Leng X S, Zhang Z P, Li Y S, et al. Fuel Processing Technology,2018,181,33.
53 Huang X S, Zhang G D, Dong F, et al. Journal of Industrial and Engineering Chemistry,2019,69,66.
54 Hao Z F, Jiao Y L, Shi Q, et al. Catalysis Today,2019,327,37.
55 Zhang G D, Han W L, Zhao,H J, et al. Applied Catalysis B Environmental,2018,226,117.
56 Zhang T R, Ma S B, Chen L Q, et al. Applied Catalysis A, General,2019,570,251.
57 Cao F, Su S, Xiang J, et al. Fuel Processing Technology,2015,135,66.
58 Buelna G, Lin Y S. Microporous & Mesoporous Materials,1999,30(2-3),359.
59 Zhao Q S, Zhou Y B,Xiang J, et al. Fuel Chemistry Acta Sinica,2009,37(3),360(in Chinese).
赵清森,周英彪,向军,等.燃料化学学报,2009,37(3),360.
60 Cao F, Su S, Xiang J, et al. Fuel,2015,139,232.
61 Yan D J, Yu Y, Xu Y, et al. Chemical Industry Progress.2015(6),157(in Chinese).
闫东杰,玉亚,徐颖,等.化工进展,2015(6),157.
62 Chen L, Li J, Ge M, et al. Catalysis Today,2010,153(3-4),77.
63 Xu W, Yu Y, Zhang C B, et al. Catalysis Communications,2008,9(6),1453.
64 Jiang Y, Xing Z, Wang X. Journal of Industrial and Engineering Chemistry,2015,29,43.
65 Sun P, Guo R T, Liu S M, et al. Molecular Catalysis,2017,433,224.
66 Xu Q, Su R, Cao L, et al. RSC Advances,2017,7,48785.
67 LI M, Guo R, Hu C, et al. Applied Surface Science,2018,436,814.
68 Fan J, Ning P, Song Z X, et al. Chemical Engineering Journal,2018,334,855.
69 You X, Sheng Z, Yu D. Applied Surface Science,2017,423,845.
70 Liu Y, You X C, Sheng Z Y, et al. New Journal of Chemistry,2018,3,11673.
71 Qiu L, Wang Y, Pang D, et al. Catalysis Communications,2016,78,22.
72 Zhang R, Yang W, Luo N. Applied Catalysis B: Environmental,2014,146,94.
73 Zhang L, Sun J, Xiong Y. et al. Chinese Journal of Catalysis,2017,38(10),1749.
74 Yao X J, Kong T T, Chen L,et al. Applied Surface Science,2017,420,407.
75 Xiong Y, Tang C, Yao X. Applied Catalysis A: General,2015,495,206.
76 Du X, Wang X, Chen Y, et al. Journal of Industrial and Engineering Chemistry,2016,36,271.
77 Zhou Z Z, Lan J M,Liu L Y, et al. Catalysis Communications,2021,149,106230.
78 Song Z, Zhang Q, Ning P, et al. Journal of Rare Earths,2016,34(7),667.
79 Jiang D, Zhang S L, Zeng Y Q, et al. Catalysts,2018,8,336.
80 Wang S X, Guo R T, Pan W G. Physical Chemistry Chemical Physics,2017,19(7),5333.
81 Sun W B. Study on the performance and mechanism of low-temperature selective catalytic reduction of NO by Mn-based composite oxides. Ph.D. Thesis, Dalian University of Technology, China,2019(in Chinese).
孙文博.Mn基复合氧化物低温选择性催化还原NO性能及机理研究.博士学位论文,大连理工大学,2019.
82 Busca G, Lietti L, Ramis G, et al. Applied Catalysis B Environmental,1998,18(1-2),1.
83 Zhang Q, Fan J, Ning P. Applied Surface Science,2018,435,1037.
84 Wu X, Yu X, He X Y, et al. The Journal of Physical Chemistry C,2019,123(17),10981.
85 Zhang L, Pierce J, Leung V. Journal of Physical Chemistry C,2013,117,8282.
86 Eigenmann F, Macijewski M, Baiker A. Applied Catalysis B Environmental,2006,62(3-4),311.
87 Chen L, Li J, Ge M. Environmental Science & Technology,2010,44(24),9590.
88 Marbán G, Fuertes A B. Catalysis Letters,2002,84,13.
89 Liu J, Li X, Zhao Q. Applied Catalysis B Environmental,2017,200,297.
90 Shu Y, Sun H, Quan X, et al. Journal of Physical Chemistry C,2012,116(48),25319.
[1] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[2] 李凌锋, 赵世贤, 郭昂, 司瑶晨, 王战民, 王刚. 利用传统电炉低温烧结致密Si3N4陶瓷[J]. 材料导报, 2022, 36(4): 20090160-6.
[3] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[4] 任智翔, 杨康, 李肽脂, 迂晨, 詹华, 吴锋, 李辉. 超声波辅助氧化改性钙基吸收剂的制备及性能研究[J]. 材料导报, 2022, 36(2): 21010211-5.
[5] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[6] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[7] 李凯雯, 刘娟红, 张超, 段品佳, 张博超. 超低温及低温循环对混凝土材料性能的影响[J]. 材料导报, 2021, 35(z2): 183-187.
[8] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[9] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[10] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[11] 孙万兴, 郭少青, 董弋, 刘洋, 高丽兵, 卫贤贤, 曹艳芝, 董红玉, 李鑫. 低温固化银浆的制备及树脂粘结相对其性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 402-405.
[12] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[13] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[14] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[15] 陈侣存, 崔雯, 陈鹏, 李康璐, 董帆, 王法理. 宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略[J]. 材料导报, 2021, 35(21): 21001-21011.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed