Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6020-6027    https://doi.org/10.11896/cldb.19100157
  无机非金属及其复合材料 |
元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响
吴彦霞1, 梁海龙1, 陈鑫1, 陈琛1, 王献忠2, 戴长友3, 胡利明1, 陈玉峰1
1 中国建筑材料科学研究总院,陶瓷科学研究院,北京 100024
2 萍乡学院江西省工业陶瓷重点实验室,萍乡 337055
3 瑞泰科技股份有限公司,北京 100024
Effect of Element (Ce, Co, La, Sn) Doping on Denitration Activity of V-Mo/TiO2 Catalysts
WU Yanxia1, LIANG Hailong1, CHEN Xin1, CHEN Chen1, WANG Xianzhong2, DAI Changyou3, HU Liming1, CHEN Yufeng1
1 Ceramics Science Institute, China Building Materials Academy, Beijing 100024, China
2 Jiangxi Provincial Key Laboratory of Industrial Ceramics, Pingxiang University, Pingxiang 337055, China
3 Ruitai Technology Co., Ltd., Beijing 100024, China
下载:  全 文 ( PDF ) ( 5218KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用浸渍法制备了一系列V-Mo/TiO2催化剂,考察了钒含量、钼含量及元素(Ce、Co、La、Sn)掺杂对催化剂脱硝活性的影响,并利用XRD、BET、H2-TPR、NH3-TPD及XPS等方法对催化剂的理化性能及结构进行了表征。结果显示,钒最佳含量为3%,钼最佳含量为6%。将Ce、La、Co、Sn掺杂到3%V2O5-6%MoO3/TiO2中,催化剂的脱硝效率明显提高,其中,3%V2O5-6%MoO3-1%SnO2/TiO2催化剂表现出最佳的脱硝活性,在180 ℃具有良好的脱硝稳定性,在引入10%(体积分数)H2O和0.03%(体积分数)SO2后,表现出良好的抗SO2/H2O的性能。这主要是由于引入的金属元素以氧化物或钒酸盐形式存在,并与活性组分钒物种有很强的相互作用,抑制了TiO2晶粒的长大,起到了细化TiO2粒径的作用,增加了催化剂表面的弱酸性位点,同时,表面活性氧及还原态的V4+、Mo4+物种数量有了大幅提升,增大了催化剂的还原程度,有利于催化还原反应的进行。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴彦霞
梁海龙
陈鑫
陈琛
王献忠
戴长友
胡利明
陈玉峰
关键词:  催化剂  V2O5-MoO3/TiO2  掺杂  脱硝效率    
Abstract: Aseries of V-Mo/TiO2 catalysts were prepared by impregnation method. The effects of vanadium content, molybdenum content and elemental (Ce, Co, La, Sn) doping on the denitrification activity of the catalyst were investigated. The physicochemical properties and structure of the catalyst were characterized by XRD, BET, H2-TPR, NH3-TPD and XPS. The results show that the optimum content of vanadium was 3% and the optimum content of molybdenum was 6%. When Ce, La, Co and Sn were doped into 3%V2O5-6%MoO3/TiO2, the denitration efficiency of the catalyst was obviously improved. Among them, 3%V2O5-6%MoO3-1%SnO2/TiO2 catalyst showed the best denitrification activity and good denitration stability at 180 ℃. After introducing 10vol% H2O and 0.03vol% SO2, it exhibited good resistance to SO2/H2O. This is mainly because the introduced metal element exists in the form of oxide or vanadate, and has a strong interaction with the active component vanadium species, inhibiting the growth of TiO2 crystal grains, and plays a role in refining the particle size of TiO2. A weakly acidic site on the surface of the catalyst is added. At the same time, the number of surface active oxygen and reduced V4+ and Mo4+ species has been greatly improved, which enhances the degree of reduction of the catalyst and facilitates the catalytic reduction reaction.
Key words:  catalyst    V2O5-MoO3/TiO2    doping    denitration efficiency
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  X701.3  
基金资助: 国家重点研发计划(2016YFC0209302);国家自然科学基金(21866026)
通讯作者:  yanxiawu1988@163.com   
作者简介:  吴彦霞,2014年6月毕业于南京工业大学,获得工程硕士学位。于2014年8月至今在中国建筑材料科学研究总院工作,主要从事环保材料领域的研究。
引用本文:    
吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
WU Yanxia, LIANG Hailong, CHEN Xin, CHEN Chen, WANG Xianzhong, DAI Changyou, HU Liming, CHEN Yufeng. Effect of Element (Ce, Co, La, Sn) Doping on Denitration Activity of V-Mo/TiO2 Catalysts. Materials Reports, 2021, 35(6): 6020-6027.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100157  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6020
1 Xiang W, Zhang Y P, Shen K, et al. Journal of Central South University(Science and Technology),2014,45(9),3315(in Chinese).
相玮,张亚平,沈凯,等.中南大学学报(自然科学版),2014,45(9),3315.
2 Liu H B, Gu J, Li W, et al. Environmental Pollution & Control,2019,41(6),668(in Chinese).
刘海兵,顾军,李威,等.环境污染与防治,2019,41(6),668.
3 Cao J, Yao X J, Yang F M, et al. Chinese Journal of Catalysis,2019,40(1),95.
4 Chen M Y, Zhao M M, Tang F S, et al. Journal of Rare Earths,2017,35,1206.
5 Zhu S W, Shen B X, Chi G L, et al. Chinese Journal of Environmental Engineering,2017,11(6),3633(in Chinese).
朱少文,沈伯雄,池桂龙,等.环境工程学报,2017,11(6),3633.
6 He H B, Ma X P, Li Z P, et al. Journal of Functional Materials,2018,49(12),12001(in Chinese).
何汉兵,马小鹏,李忠濮,等.功能材料,2018,49(12),12001.
7 Chen J Y, Zhu B Z, Du T K, et al. Nonferrous Metals Engineering,2017,7(2),99(in Chinese).
陈九玉,朱宝忠,堵同宽,等.有色金属工程,2017,7(2),99.
8 Simonot L, Maire G. Applied Catalysis B: Environmental,1997,11(2),181.
9 Zhao M M, Chen M Y, Li S X, et al. Iron Steel Vanadium Titanium,2017,38(1),60(in Chinese).
赵梦梦,陈梦寅,李尚相,等.钢铁钒钛,2017,38(1),60.
10 Zhang K, Qi D S, Gong Z J, et al. Rare Metals and Cemented Carbides,2020(1),18(in Chinese).
张凯,齐大双,龚志军,等.稀有金属与硬质合金,2020(1),18.
11 Jin Q J, Tao X J, Pan Y C, et al. Thermal Power Generation,2018,47(2),71(in Chinese).
金奇杰,陶兴军,潘有春,等.热力发电,2018,47(2),71.
12 Guo L L, Zhang Q, Liu L, et al. Petrochemical Technology & Application,2016,34(6),445(in Chinese).
郭丽丽,张强,刘璐,等.石化技术与应用,2016,34(6),445.
13 Su Y C, He H, Sun X L, et al. Journal of the Chinese Society of Rare Earths,2018,36(2),161(in Chinese).
苏垚超,何洪,孙向丽,等.中国稀土学报,2018,36(2),161.
14 Huang L H, Li X, Hua J. Advanced Engineering Sciences,2019,51(5),185(in Chinese).
黄利华,李雪,华坚.工程科学与技术,2019,51(5),185.
15 Wu L H, Deng S S, Li Y H. New Chemical Materials,2015,43(10),104(in Chinese).
吴利红,邓珊珊,李永红.化工新型材料,2015,43(10),104.
16 Deng S S, Li Y H, A R T N, et al. Chemical Industry and Engineering Progress,2013,32(10),2403(in Chinese).
邓珊珊,李永红,阿荣塔娜,等.化工进展,2013,32(10),2403.
17 Zhang X T, Li Z X. Synthetic Materials Aging and Application,2015,44(1),77(in Chinese).
张新堂,李振兴.合成材料老化与应用,2015,44(1),77.
18 Huang H, Guo Z C. Journal of Inorganic Materials,2012,27(9),939(in Chinese).
黄惠,郭忠诚.无机材料学报,2012,27(9),939.
19 Zhao X, Huang L, Li H R, et al. Chinese Journal of Catalysis,2015,36(11),1886.
20 Li H. Preparation and reaction mechanism of vanadium-manganese composite oxides for selective catalytic reduction of NO x at low temperature. Master's Thesis, University of Jinan, China,2016(in Chinese).
李浩.钒锰复合氧化物低温脱硝催化剂的制备及反应机理.硕士学位论文,济南大学,2016.
21 Li Z Y, Tang Q, Zuo Z H, et al. Industrial Catalysis,2016,24(7),41(in Chinese).
李泽英,唐清,左赵宏,等.工业催化,2016,24(7),41.
22 Shen B X, Ma J. Journal of Fuel Chemistry and Technology,2012,40(2),247(in Chinese).
沈伯雄,马娟.燃料化学学报,2012,40(2),247.
23 Sun H. Relationship between the surface element valence state and the denitration activity, mechanism for V2O5-WO3/TiO2 catalyst. Master's Thesis, Harbin Engineering University, China,2017(in Chinese).
孙辉.V2O5-WO3/TiO2催化剂表面元素价态与脱硝活性及机制的关系.硕士学位论文,哈尔滨工程大学,2017.
24 Yu H. Study on activity and SO2 tolerance over modified VO x/TiO2 for low-temperature selective of NO x. Master's Thesis, Zhejiang University of Technology, China,2012(in Chinese).
俞河.低温SCR钒基催化剂脱硝活性及抗硫性研究.硕士学位论文,浙江工业大学,2012.
25 Sun Z H, Fu Y L, Bao J. Petrochemical Technology,2004,33(Z1),627(in Chinese).
孙中海,伏义路,鲍骏.石油化工,2004,33(Z1),627.
26 Wang Z J, Wu P Y, Lan L, et al. Acta Physico-Chimica Sinica,2015,31(3),533.
27 Liu X. MnO x-CoO x catalysts for selective catalytic reduction of NO x with NH3 at low temperature. Master's Thesis, Chongqing University, China,2014(in Chinese).
刘雄.低温NH3-SCR脱硝MnOx-CoOx复合氧化物催化剂的研究.硕士学位论文,重庆大学,2014.
28 Zhu Z Q, Ding T Z, Zhang L W, et al. Chinese Journal of Vacuum Science and Technology,2006,26(6),494(in Chinese).
朱志强,丁铁柱,张利文,等.真空科学与技术学报,2006,26(6),494.
29 Wang J S, Zhou M L, Zhang J X, et al. Rare Metal Materials and Engineering,2000,29(4),225(in Chinese).
王金淑,周美玲,张久兴,等.稀有金属材料与工程,2000,29(4),225.
30 Fu M, Xu H Y, Wu S W. Acta Scientiae Circumstantiae,2017,37(3),994(in Chinese).
傅敏,徐海燕,吴四维.环境科学学报,2017,37(3),994.
31 Wang N, Liu J J, Gu W W, et al. RSC Advances.2016,6,77786.
32 Gu W W, Liu J J, Hu M M, et al. Applied Materials & Interfaces,2015,7(48),26914.
33 Hu R Z, Ouyang Y P, Liang T, et al. Energy & Environmental Science,2017,10(9),1.
[1] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[2] 芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
[3] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[4] 邱宇, 朱俊, 周云霞, 李康, 张钰. Al掺杂浓度对Hf0.5Zr0.5O2薄膜铁电性能的影响[J]. 材料导报, 2021, 35(2): 2001-2005.
[5] 巩云, 王龙龙, 徐亚琪, 张传香. 二氧化钛光催化材料的改性研究进展[J]. 材料导报, 2020, 34(Z2): 37-40.
[6] 彭仁强, 李娜, 陈倩霞. 掺杂金属元素对Fe3O4纳米材料磁性性质影响的研究进展[J]. 材料导报, 2020, 34(Z2): 74-77.
[7] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[8] 赵晶璨, 王环江, 周国永, 宝冬梅, 罗迎春. 钯催化末端炔烃羰基化研究进展[J]. 材料导报, 2020, 34(Z2): 543-548.
[9] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[10] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[11] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[12] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[13] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[14] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[15] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed