Please wait a minute...
材料导报  2021, Vol. 35 Issue (5): 5214-5221    https://doi.org/10.11896/cldb.19080141
  高分子与聚合物基复合材料 |
硼氢化钠还原烯烃和炔烃的研究进展
芦宝华1, 徐宁1, 陈晓彤1, 谢晓红1, 李久明1,2,3
1 内蒙古民族大学化学与材料学院,通辽 028000
2 内蒙古自治区高校蓖麻产业工程技术研究中心,通辽 028000
3 内蒙古自治区天然产物化学及功能分子合成重点实验室,通辽 028000
Research Progress in Reduction of Alkenes and Alkynes by Sodium Borohydride
LU Baohua1, XU Ning1, CHEN Xiaotong1, XIE Xiaohong1, LI Jiuming1,2,3
1 College of Chemistry and Materials, Inner Mongolia University for Nationalities, Tongliao 028000, China
2 Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao 028000, China
3 Inner Mongolia Key Laboratory for the Natural Products Chemistry and Functional Molecular Synthesis, Tongliao 028000, China
下载:  全 文 ( PDF ) ( 5467KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不饱和烃催化加氢一直是制备某些无法从自然界得到或合成的化合物的重要途径,在化工生产和科学研究中极其重要。传统不饱和烃的加氢不仅需要催化剂,而且需要较高的反应温度和氢气压力,反应条件相对苛刻,不仅对反应设备要求严格,而且在反应过程中存在安全隐患。因此亟需探索一种反应条件温和、催化效果优异的催化体系。
1942年Brown发现了NaBH4,其是一种廉价、安全、稳定、易于处理且具有较强还原性的氢化物,一般用来还原醛酮羰基。Brown还在1962年首次报道了NaBH4在催化剂的存在下还原简单烯烃,这是NaBH4作为氢供体还原不饱和烃的第一个实例,该方法成为传统不饱和烃还原的替代性方法。
NaBH4能还原不饱和烃是基于催化剂的存在,催化剂分为贵金属催化剂和非贵金属催化剂,贵金属催化剂主要为Pd、In、Ru等,非贵金属主要为Cu、Co、Ni等。贵金属和非贵金属催化剂是指其金属盐或负载在载体上的金属纳米粒子,都具有高催化活性和化学稳定性。最初的研究主要以贵金属催化剂为主,然而贵金属催化剂在价格上相对昂贵,某些贵金属催化剂存在使用后即失活的缺点,这明显增加了成本。随着研究的深入,学者们逐渐倾向于非贵金属催化剂,非贵金属催化剂不仅价格低廉,而且在催化效果上与贵金属催化剂相差无几。目前,贵金属催化剂/NaBH4催化体系下,不饱和烃的转化率最高可以达到99%;而非贵金属催化剂/NaBH4催化体系下,不饱和烃的转化率最高可以达到98%。可见两种催化剂催化还原不饱和烃的转化率基本一致,催化活性基本相同。因此,无特殊要求时可以使用非贵金属催化剂代替某些贵金属催化剂。
本文综述了近年来NaBH4在不同非贵金属/贵金属催化剂条件下还原烯烃和炔烃的研究成果和进展,包括含有敏感保护基团的烯烃和炔烃,并进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
芦宝华
徐宁
陈晓彤
谢晓红
李久明
关键词:  烯烃  炔烃  催化剂  硼氢化钠  还原    
Abstract: Catalytic hydrogenation of unsaturated hydrocarbons has always been an important approach to prepare compounds which can not be obtained from nature, which is extreme important in industrial production and researches. Traditional hydrogenation of unsaturated hydrocarbons not only requires catalysts, but also higher reaction temperature and hydrogen pressure are needed, the reaction conditions are relatively harsh, which is not only extreme strict for reaction equipment, but also has obvious issues of potential safety in the reaction. Therefore, it is necessary to explore a catalytic system with mild reaction conditions and excellent catalytic effect.
NaBH4 was discovered by Brown at the University of Chicago in 1942. Organic borohydride is generally applied to reduce the carbonyl groups of aldehydes and ketones as cheap, safe, stable, easily handling and highly reductive. In 1962, Brown first reported the reduction of simple alkynes by NaBH4 in the presence of catalyst. This is the first example of NaBH4 as a hydrogen donor for the reduction of unsaturated hydrocarbons, an alternative method for the reduction of unsaturated hydrocarbons was found.
NaBH4 can reduce unsaturated hydrocarbons based on catalysts. The catalysts can be divided into precious metal and non-precious metal catalysts. The precious metal catalysts are mainly Pd, In, Ru and other metals, while the non-precious metals mainly include Cu, Co, Ni and other metals. Precious metal and non-precious metal catalysts are metal salts or metal nanoparticles supported on carrier, which have high catalytic activity and chemical stability. At first, precious metal catalysts were mainly studied, however the price of precious metal catalysts was relatively high, some precious metal catalysts were deactivated after application. Non-precious metal catalysts are gradually becoming the focus as researches continue, which are not only cheap, but also have similar catalytic effect with precious metal catalysts. Now, the conversion rate of unsaturated hydrocarbon can be boosted up to 99% in precious metal catalyst/NaBH4 catalytic system, 98% conversion rate can be achieved in non-precious metal catalyst/NaBH4 catalytic system. It can be noted that the conversion rate and catalytic activity of the two catalysts are basically same. Therefore, non-precious metal catalysts can be applied instead of precious metal catalysts without special requirements.
Here the essay reviews recent research results and advancements of alkenes and alkynes by NaBH4 under various non-precious metal/precious metal catalysts, including the alkynes and alkynes containing sensitive protective groups. The reduction of alkynes and alkynes by sodium borohydride are briefly introduced, summarized and prospected.
Key words:  alkenes    alkynes    catalyst    sodium borohydride    reduction
               出版日期:  2021-03-10      发布日期:  2021-03-12
ZTFLH:  O61  
基金资助: 内蒙古自治区高校蓖麻产业工程技术研究中心开放基金(MDK2016001);内蒙古民族大学国家基金培育项目(NMDGP1503);内蒙古民族大学研究生科研创新资助项目(NMDSS1870);内蒙古民族大学“天然产物化学及功能分子合成自治区重点实验室”开放课题(MDK2017051)
通讯作者:  lijiuming10@163.com   
作者简介:  芦宝华,2017年6月毕业于河套学院,获得理学学士学位。现为内蒙古民族大学化学与材料学院硕士研究生,在李久明教授的指导下进行研究。目前主要研究领域为金属纳米粒子催化NaBH4还原烯烃。
李久明,内蒙古民族大学化学化工学院教授,硕士研究生导师。1994年7月本科毕业于内蒙古民族师范学院,2008年7月毕业于中国科学院新疆理化技术研究所有机化学专业并获得博士学位,博士毕业后执教于内蒙古民族大学化学与材料学院。主要从事天然产物的提取分离及结构鉴定、精细化学品的合成与应用、化学农药与生物农药的研发应用等研究。近年来发表论文20余篇,包括Chemistry of Natural Compounds、Acta Cryst、Industrial Crops and Products等。
引用本文:    
芦宝华, 徐宁, 陈晓彤, 谢晓红, 李久明. 硼氢化钠还原烯烃和炔烃的研究进展[J]. 材料导报, 2021, 35(5): 5214-5221.
LU Baohua, XU Ning, CHEN Xiaotong, XIE Xiaohong, LI Jiuming. Research Progress in Reduction of Alkenes and Alkynes by Sodium Borohydride. Materials Reports, 2021, 35(5): 5214-5221.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19080141  或          http://www.mater-rep.com/CN/Y2021/V35/I5/5214
1 Slack E D, Gabriel C M, Lipshutz B H. Angewandte Chemie,2014,53(51),14051.
2 Lipshutz B H, Ghorai S, Abela A R, et al. The Journal of Organic Che-mistry,2011,76(11),4379.
3 Lipshutz B H, Ghorai S. Aldrichimica Acta,2008,40(41),59.
4 Tran A T, Huynh V A, Friz E M, et al. Tetrahedron Letters,2009,50(16),1817.
5 Brown H C, Brown C A. Journal of the American Chemical Society,1962,84(8),1494.
6 Brown H C, Brown C A. Journal of the American Chemical Society,1962,84(8),1495.
7 Russo A T, Amezcua K L, Huynh V A, et al. Tetrahedron Letters,2011,52(50),6823.
8 Wuts P G M and Greene T W. Greene’s protective groups in organic synthesis. 4th Edition, John Wiley & Sons, USA,2006.
9 Rylander PN. Hydrogenation methods, Academic Press, USA,1985,157.
10 Al Soom N, Thiemann T. International Journal of Organic Chemistry,2016,6(1),1.
11 Miyazaki Y, Hagio H, Kobayashi S. Organic Biomolecular Chemistry,2006,4(13),2529.
12 Wu G, Huang M, Richards M, et al. Synthesis,2003(11),1657.
13 Monguchi Y, Marumoto T, Ichikawa T, et al. ChemCatChem,2015,7(14),2155.
14 Esaki H, Hattori T, Tsubone A, et al. ChemCatChem,2013,5(12),3629.
15 Takahashi T, Yoshimura M, Suzuka H, et al. Tetrahedron,2012,68(39),8293.
16 Hattori T, Tsubone A, Sawama Y, et al. Tetrahedron,2014,70(32),4790.
17 Sajiki H. Hirota K. Chemical and Pharmaceutical Bulletin,2003,51(3),320.
18 Sajiki H. Monguchi Y. Pharmaceutical Process Chemistry,2010,4,77.
19 Mori A, Miyakawa Y, Ohashi E, et al. Organic Letters,2006,8(15),3279.
20 Mori A, Mizusaki T, Miyakawa Y, et al. Tetrahedron,2006,62(51),11925.
21 Ranu B C, Samanta S. Tetrahedron Letters,2002,43(41),7405.
22 Ranu B C, Dutta J, Guchhait S K. Organic Letters,2001,3(16),2603.
23 Inoue K, Sawada A, Shibata I, et al. Journal of the American Chemical Society,2002,124(6),906.
24 Sharma P K, Kumar S, Kumar P, Nielsen P, et al. Tetrahedron Letters,2007,48(49),8704.
25 Ranu B C, Samanta S. Tetrahedron,2003,59(40),7901.
26 Babler J H, White N A. Tetrahedron Letters,2010,51(2),439.
27 Babler J H, Ziemke D W, Hamer R M. Tetrahedron Letters,2013,54(13),1754.
28 Adair G R A, Kapoor K K, Scolan A L B, et al. Tetrahedron Letters,2006,47(50),8943.
29 Ficker M, Petersen J F, Gschneidtner T, et al. Chemical Communications,2015,51(49),9957.
30 Ficker M, Svenningsen S W, Larribeau T, et al. Tetrahedron Letters,2018,59(12),1125.
31 Rao G K, Gowda N B, Ramakrishna R A. Synthetic Communications,2012,42(6),893.
32 Barrios-Francisco R, García J J. Applied Catalysis A:General,2010,385(1-2),108.
33 Edelbach B L, Lachicotte R J, Jones W D. Organometallics,1999,18(20),4040.
34 Wen X, Shi X, Qiao X, et al. Chemical Communications,2017,53(39),5372.
35 Vasilikogiannaki E, Gryparis C, Kotzabasaki V, et al. Advanced Synthesis and Catalysis,2013,355(5),907.
36 Shi L, Liu Y, Liu Q, et al. Green Chemistry,2012,14(5),1372.
37 Fu S, Chen N Y, Liu X, et al. Journal of the American Chemical Society,2016,138(27),8588.
38 Chen F, Kreyenschulte C, Radnik J, et al. ACS Catalysis,2017,7(3),1526.
39 Tokmic K, Fout A R. Journal of the American Chemical Society,2016,138(41),13700.
40 Yakabe S, Hirano M, Morimoto T. Tetrahedron Letters,2000,41(35),6795.
41 Hirano M, Oose M, MorimotoT. Chemistry Letters,1991,20(2),331.
42 Hirano M, Oose M, Morimoto N T. Bulletin of the Chemical Society of Japan,1991,64(3),1046.
43 Hirano M, Tomaru J, Morimoto T. Chemistry Letters,1991,20(3),523.
44 Hirano M, Tomaru J, Morimoto T. Bulletin of the Chemical Society of Japan,1991,64(12),3752.
45 Hirano M, Ueno Y, Morimoto T. Synthetic Communications,1995,25(20),3125.
46 Hirano M, Ueno Y, Morimoto T. Synthetic Communications,1995,25(23),3765.
47 Hirano M, Yakabe S, Clark J H, et al. Journal of the Chemical Society, Perkin Transactions 1,1996,22,2693.
48 Clark J H. Journal of the Chemical Society, Perkin Transactions 1,1997,20,3081.
49 Hirano M, Yakabe S, Monobe H, et al. Canadian Journal of Chemistry,1997,75(12),1905.
50 Hirano M, Kudo H, Morimoto T. Bulletin of the Chemical Society of Japan,1992,65(6),1744.
51 Hirano M, Kudo H, Morimoto T. Bulletin of the Chemical Society of Japan,1994,67(5),1492.
52 Hirano M, Yakabe S, Itoh S, et al. Synthesis,1997,1997(10),1161.
53 Li K, Liu C, Wang K, et al. RSC Advances,2018,8(14),7761.
54 Li K, Wang K, Liu C, et al. Synthetic Communications,2019,49(5),672.
55 Nakoji M, Kanayama T, Okino T, et al. The Journal of Organic Chemistry,2002,67(21),7418.
56 Takeuchi M, Kano K. Organometallics,1993,12(6),2059.
57 MacNair A J, Tran M M, Nelson J E, et al. Organic & Biomolecular Chemistry,2014,12(28),5082.
58 Takeuchi M, Kano K. Organometallics,1993,12(6),2059.
59 Sears J E, Boger D L. Accounts of Chemical Research,2015,48(3),653.
60 Ishikawa H, Colby D A, Seto S, et al. Journal of the American Chemical Society,2009,131(13),4904.
61 Leggans E K, Barker T J, Duncan K K, et al. Organic Letters,2012,14(6),1428.
[1] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[2] 赵晨, 武文粉, 孟子衡, 李会泉, 王晨晔, 王兴瑞. 废SCR脱硝催化剂中砷元素赋存形态与氧化碱浸脱除[J]. 材料导报, 2021, 35(5): 5001-5010.
[3] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[4] 张秀玲, 赵静, 徐卫卫, 李艳琴. 氢等离子体辅助制备Ru/UiO-66催化材料及其应用[J]. 材料导报, 2020, 34(Z2): 84-87.
[5] 孙健, 戚添益, 居殿春, 邱家用. 铁矿粉预还原回转窑气固三维传输行为[J]. 材料导报, 2020, 34(Z2): 186-193.
[6] 胡洁琼, 谢明, 陈永泰, 杨有才, 方继恒, 范小通, 李爱坤. Au-Pt-Ni三元催化剂体系纳米相图的研究进展[J]. 材料导报, 2020, 34(Z2): 338-343.
[7] 赵晶璨, 王环江, 周国永, 宝冬梅, 罗迎春. 钯催化末端炔烃羰基化研究进展[J]. 材料导报, 2020, 34(Z2): 543-548.
[8] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[9] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[10] 刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
[11] 岳先会,金鑫,谷成. 碳材料促进硝基/卤素取代类有机污染物还原降解的研究进展[J]. 材料导报, 2020, 34(3): 3028-3036.
[12] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[13] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[14] 肖帅, 王振飞, 张萍, 何岗, 洪建和. 还原氧化石墨烯/碳纸空气电极的电化学制备及性能[J]. 材料导报, 2020, 34(20): 20005-20009.
[15] 崔田路, 曹中秋, 贾中秋, 于佳蕊, 徐欢, 张轲, 王艳. 块体纳米晶Fe-50Cu合金在H2SO4溶液中的电化学腐蚀行为[J]. 材料导报, 2020, 34(20): 20096-20102.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed