Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20005-20009    https://doi.org/10.11896/cldb.19060093
  无机非金属及其复合材料 |
还原氧化石墨烯/碳纸空气电极的电化学制备及性能
肖帅, 王振飞, 张萍, 何岗, 洪建和
中国地质大学(武汉)材料与化学学院,武汉 430074
Electrochemical Preparation and Performance of Reduced Graphene Oxide/Carbon Paper Air Electrode
XIAO Shuai, WANG Zhenfei, ZHANG Ping, HE Gang, HONG Jianhe
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
下载:  全 文 ( PDF ) ( 4825KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用一种新的电泳沉积-阳极原位还原法制备还原氧化石墨烯/碳纸(rGO/CP)电极材料,并用于锂-空气电池阴极。氧化石墨烯在碱性电泳液中超声分散,羧基基团解离,并在外加电场力推动下发生共价键重组合成rGO/CP极片。扫描电镜、红外光谱以及拉曼光谱测试结果表明,氧化石墨烯成功负载于电泳池的阳极碳纸上并被原位还原。电化学测试结果表明:控制电解液电导率为12 mS·cm-1,电压为20 V,还原10 min制得的rGO/CP极片用于锂-空气电池阴极,在0.05 mA·cm-2电流密度下,首次放电容量达到4.161 mAh,是碳纸电极容量的18.5倍;控制充放电容量为0.1 mAh,当电压为2.0~4.5 V时,首圈充电电位降低0.19 V,且明显增强了电池的循环稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖帅
王振飞
张萍
何岗
洪建和
关键词:  锂-空气电池  还原氧化石墨烯  电化学制备  阴极材料    
Abstract: Reduced graphene oxide/carbon paper (rGO/CP) electrode was prepared by a new electrophoretic sedimentation combined with in situ reduction method. The rGO/CP electrode sheets were synthesized by covalent bond recombination in alkaline electrophoresis solution under ultrasonic dispersion, group dissociation and electric field force. SEM, FT-IR and Raman spectra showed that GO was loaded on carbon paper surface and reduced to rGO. The rGO/CP electrode prepared by reduction in the electrophoresis solution with conductivity of 12 mS·cm-1 at 20 V for 10 min was studied in detail. Electrochemical results show that under current density of 0.05 mA·cm-2, the first discharge capacity reached 4.161 mAh, which is 18.5 times of that of pure carbon paper electrode. With the cut-off capacity of 0.1 mAh and potential of 2.0—4.5 V, the rGO/CP electrode leaded to a decrease in charging potential by 0.19 V at the first turn, and presented much better cycle stability.
Key words:  lithium-air batteries    reduced graphene oxide    electrochemical preparation    cathode material
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  O646  
基金资助: 湖北省自然科学基金(2017CFB688)
通讯作者:  jhhong@cug.edu.cn   
作者简介:  肖帅,中国地质大学(武汉)硕士研究生。2017年本科毕业于中国地质大学(武汉)材料与化学学院,主要从事锂离子电池正极材料研究,涉及高效能LiFePO4工艺探索以及锂空气正极碳基材料的合成、固体电解质隔膜。
洪建和,中国地质大学(武汉)副教授,硕士研究生导师,主要研究方向包括新能源材料(锂离子电池材料)、功能材料以及物理化学。
引用本文:    
肖帅, 王振飞, 张萍, 何岗, 洪建和. 还原氧化石墨烯/碳纸空气电极的电化学制备及性能[J]. 材料导报, 2020, 34(20): 20005-20009.
XIAO Shuai, WANG Zhenfei, ZHANG Ping, HE Gang, HONG Jianhe. Electrochemical Preparation and Performance of Reduced Graphene Oxide/Carbon Paper Air Electrode. Materials Reports, 2020, 34(20): 20005-20009.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060093  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20005
1 Doron Aurbach, Bryan D, McCloskey L F, et al. Nature Energy, 2016, 16,128.
2 Wei W, Christopher J B, Peng D, et al. Electrochimica Acta, 2014, 138-143,119.
3 Shao Y, Ding F, Xiao J, et al. Advanced Function Materials, 2013, 23,987.
4 Cheng H, Scott K. Journal of Power Sources, 2010, 195(5),1370.
5 Tran C, Yang X Q, Qu D. Journal of Power Sources, 2010, 195(7),2057.
6 Ottakam T M M, Freunberger S A, Peng Z, et al. Journal of the American Chemical Society, 2013, 135(1),494.
7 Xiao J, Mei D, Li X, et al. Nano Letter, 2011, 11,5071.
8 Wang M, Huang H X, Qi P T, et al. Materials Reports B:Research Papers, 2019, 33(3), 927(in Chinese).
王鸣, 黄海旭, 齐鹏涛, 等.材料导报:研究篇, 2019, 33(3),927.
9 Liu S, Wang Z, Yu C, et al. Journal of the American Chemical Socity, 2013, 135(1), 494.
10 Mitchell R, Gallant B, Thompson C, et al. Energy & Environmental Science, 2011, 4(8), 2952.
11 Zhang W, Zhu J, Ang H, et al. Nanoscale, 2013, 5(20), 9651.
12 Wong R A, Dutta A, Yang C, et al. Chemistry of Materials, 2016, 28 (21), 8006.
13 Belova A I, Kwabi D G, Yashina L V, et al. Journal of Physical Chemistry C, 2017, 121(3),1569.
14 Ogasawara T, Débart A, Holzapfel M, et al. Journal of the American Chemical Society, 2006, 128(4), 1390.
15 Débart A, Bao J, Armstrong G, et al. Journal of Power Sources, 2007, 174(2),1177.
16 Débart A, Paterson A J, Bao J, et al. Angewandte Chemie International Edition, 2008, 47(24),4521.
17 Yin J, Fang B, Luo J, et al. Nanotechnology, 2012, 23(30), 305404.
18 Kim B G, Kim H J, Back S, et al. Scientific Reports, 2014, 4(7489), 4225.
19 Kim S T, Choi N, Park S, et al. Advanced Energy Materials, 2015, 5(3),1401030.
20 Kwak K H, Dong W K, Kang Y, et al. Journal of Materials Chemistry A, 2016, 4(42), 16356.
21 Han X, Cheng F, Chen C, et al. Inorganic Chemistry Frontiers, 2016, 3(6),866.
22 Stankovich S, Dikin D A, Piner R D, et al. Carbon, 2007, 45(7),1558.
23 Wu L, Chao Z, Song T M, et al. Chinese Journal of Analytical Chemistry, 2014(11), 1656(in Chinese).
吴玲, 曹忠, 宋天铭,等. 分析化学, 2014(11), 1656.
24 Deng K Q, Ning Y L, Qiu X Y, et al. Journal of Analytical Science, 2017, 33(3),383(in Chinese).
邓克勤, 令玉林, 邱喜阳, 等. 分析科学学报, 2017, 33(3), 383.
25 Malard L M, Pimenta M A, Dresselhaus G, et al. Physics Reports, 2009, 473(5), 51.
26 Wu J X, Xu H, Zhang J. Journal of the Chinese Chemical Society, 2014, 72(3), 301(in Chinese).
吴娟霞, 徐华, 张锦. 化学学报, 2014, 72(3), 301.
27 Hee-Dae L, Byungju L, et al. Chemical Society Reviews, 2017, 46,2873.
[1] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[2] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[3] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[4] 王玉江, 黄威, 黄玉炜, 魏世丞, 王博, 梁义, 徐滨士. SiC/Fe3O4复合材料的制备及吸波性能[J]. 材料导报, 2019, 33(10): 1624-1629.
[5] 杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
[6] 娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
[7] 杨绍斌,张琴,沈丁,董伟,刘超. 滴加速率对TiO2/RGO复合材料结构和储钠性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 1-5.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed