Please wait a minute...
材料导报  2020, Vol. 34 Issue (20): 20010-20014    https://doi.org/10.11896/cldb.19040065
  无机非金属及其复合材料 |
TC、高性能压电陶瓷BNT-PZT的制备及微观机制
季万万1, 张帅1, 陆小龙1, 方必军1, 丁建宁1,2
1 常州大学材料科学与工程学院,材料科学与工程国家级实验教学示范中心,江苏省光伏科学与工程协同创新中心,常州 213164
2 江苏大学机械工程学院,镇江 212013
Preparation and Micro-mechanism of High-TC and High Performance Piezoelectric Ceramics BNT-PZT
JI Wanwan1, ZHANG Shuai1, LU Xiaolong1, FANG Bijun1, DING Jianning1,2
1 School of Materials Science and Engineering, National Experimental Demonstration Center for Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China
2 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
下载:  全 文 ( PDF ) ( 5833KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科学技术的进步,能源、航天等领域对高居里温度(TC)、高性能、高稳定性压电器件有极大的需求。本工作通过固相法制备高TC压电陶瓷Bi(Ni1/2Ti1/2)O3-Pb(Zr1/2Ti1/2)O3(BNT-PZT)。通过工艺优化和组分调整发现,1 090 ℃烧结2 h制备的准同型相界(MPB)附近组成的0.25Bi-(Ni1/2Ti1/2)O3-0.75Pb(Zr1/2Ti1/2)O3(0.25BNT-0.75PZT)陶瓷呈现出最佳的电学性能,且在TC以下具有很好的热稳定性:εm=18 944,TC=220.1 ℃,d33*=487.6 pm/V,d33=510 pC/N,Kp=59.8%。利用升温拉曼光谱研究了0.25BNT-0.75PZT陶瓷的铁电相变机理,发现陶瓷中存在低对称性极性纳米微区或多相共存;电子背散射(EBSD)分析证明0.25BNT-0.75PZT陶瓷的微区相结构为三方相和四方相共存。低对称性极性纳米微区或多相共存导致晶格畸变和极化旋转的能垒降低,使得MPB附近的0.25BNT-0.75PZT陶瓷具有优异的电学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季万万
张帅
陆小龙
方必军
丁建宁
关键词:  钛镍酸铋-锆钛酸铅(BNT-PZT)  电学性能  铁电相变  拉曼光谱  电子背散射    
Abstract: With the progress of science and technology, piezoelectric devices with high Curie-temperature (TC), excellent performance and high temperature stability are dramatically required in energy industry, aerospace industry and related fields. High TC piezoelectric ceramics Bi-(Ni1/2Ti1/2) O3-Pb (Zr1/2Ti1/2) O3 (BNT-PZT) were prepared by the solid-state method in this work. Via sintering processing optimization and composition selection, 0.25Bi (Ni1/2Ti1/2) O3-0.75Pb (Zr1/2Ti1/2) O3 (0.25BNT-0.75PZT) ceramics with composition around the morphotropic phase boundary (MPB) sintered at 1 090 ℃ for 2 h present excellent electrical performance and high stability below the TC temperatures, in which εm=18 944, TC=220.1 ℃, d33*=487.6 pm/V, d33=510 pC/N and Kp=59.8%. The ferroelectric phase transition mechanism of the 0.25BNT-0.75PZT ceramics was studied by temperature dependent Raman spectroscopy. Based on which low symmetric polar nano-regions or multi-phases coexistence is discovered. Electron back-scattered diffraction (EBSD) also discloses the existence of rhombohedral and tetragonal phases in micro-regions in the 0.25BNT-0.75PZT ceramics. The low symmetric polar nano-regions or multi-phases coexistence reduces the energy barrier of the crystalline lattice distortion and polarization rotation, contributing to the excellent electrical properties of the 0.25BNT-0.75PZT ceramics around MPB.
Key words:  BNT-PZT    electrical properties    ferroelectric phase transition    Raman spectroscopy    electron back-scattered diffraction (EBSD)
               出版日期:  2020-10-25      发布日期:  2020-11-06
ZTFLH:  TQ174.75  
基金资助: 国家自然科学基金(51577015);江苏高校品牌专业建设工程;江苏高校优势学科建设工程
通讯作者:  fangbj@cczu.edu.cn   
作者简介:  季万万,硕士,2019年于常州大学获得硕士学位,主要从事高居里温度压电陶瓷研究。
方必军,常州大学教授。2002年于中国科学院上海硅酸盐研究所获得博士学位。主要从事压电铁电陶瓷晶体材料与器件、纳米功能材料和溶剂热合成的研究。
引用本文:    
季万万, 张帅, 陆小龙, 方必军, 丁建宁. 高TC、高性能压电陶瓷BNT-PZT的制备及微观机制[J]. 材料导报, 2020, 34(20): 20010-20014.
JI Wanwan, ZHANG Shuai, LU Xiaolong, FANG Bijun, DING Jianning. Preparation and Micro-mechanism of High-TC and High Performance Piezoelectric Ceramics BNT-PZT. Materials Reports, 2020, 34(20): 20010-20014.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040065  或          http://www.mater-rep.com/CN/Y2020/V34/I20/20010
1 Zhu X, Xu G, Liu J. Materials China, 2017, 36(4), 39(in Chinese).
朱秀,许桂生,刘锦峰.中国材料进展,2017,36(4),39.
2 Shin D J, Jeong S J, Seo C E, et al. Ceramics International, 2015, 41, S686.
3 Gao Z, Lu C, Wang Y, et al. Scientific Reports, 2016, 6, 24139.
4 Pascual-González C, Berganza E, Amorín H, et al. Materials & Design, 2016, 108, 501.
5 Ansell T Y, Cann D P, Sapper E, et al. Journal of the American Ceramic Society, 2015, 98, 455.
6 Kang H J, Chen J, Liu L J, et al. Inorganic Chemistry Communications, 2013, 31, 66.
7 Ji W W, Feng S, Fang B J, et al. Current Applied Physics, 2018, 18, 289.
8 Zhang M H, Wang K, Du Y J, et al. Journal of the American Ceramic Society, 2017, 139, 3889.
9 Liu D, Tian C Y, Ma C G, et al. Scripta Materialia, 2016, 123, 64.
10 Lee H Y, Wang K, Yao F Z, et al. Journal of Applied Physics, 2017, 121, 174103.
11 Pezzotti G. Journal of Applied Physics, 2013, 113, 211301.
12 Liu X, Fang B J, Deng J, et al. Journal of Applied Physics, 2016, 119, 014105.
13 Fang B J, Liu X, Li X B, et al. Applied Physics A, 2016, 122, 811.
14 Liu Z W, Hua J J, Lin C C, et al. Journal of Inorganic Materials, 2015, 30(8), 833(in Chinese).
刘紫微,华佳捷,林初城,等.无机材料学报,2015,30(8),833.
15 Zheng H Y, Meng C X, Hu D L, et al. Journal of Inorganic Materials, 2018, 33(4), 380(in Chinese).
郑海亚,孟晨曦,胡冬力,等.无机材料学报,2018,33(4),380.
16 Choi S M, Stringer C J, Shrout T R, et al. Journal of Applied Physics, 2005, 98, 034108.
17 Uchino K, Nomura S. Ferroelectrics, 1982, 44, 55.
18 Wei X Y, Feng Y J, Yao X. Applied Physics Letters, 2003, 83, 2031.
19 Wang D W, Cao M S, Zhang S J. Journal of the American Ceramic Society, 2012, 95, 3220.
20 Yao F Z., Wang K, Jo W, et al. Advanced Functional Materials, 2016, 26, 1217.
21 Zhu R F, Ji W W, Fang B J, et al. Ceramics International, 2017, 43, 6417.
22 Li X B, Wang Y J, Liu L H, et al. Materials Chemistry and Physics, 2010, 122, 350.
23 Liu N, Dittmer R, Stark R W, et al. Nanoscale, 2015, 7, 11787.
[1] 金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
[2] 邓亚, 张宇民, 周玉锋, 王伟. 碳化硅单晶材料残余应力检测技术研究进展[J]. 材料导报, 2019, 33(Z2): 206-209.
[3] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[4] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[5] 张雪峰, 崔泽波, 贾晓林, 刘芳. Cr2O3对尾矿氟金云母微晶玻璃电学性能和切削性能的影响[J]. 材料导报, 2019, 33(6): 970-974.
[6] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[7] 王勇, 杨贤军, 喻文新, 黄树东, 徐永红, 吴达, 乔丽英. 化学成分及时效处理对镍铬铝铁精密电阻合金性能的影响[J]. 材料导报, 2019, 33(24): 4131-4135.
[8] 龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[9] 孙钰琨, 白波, 马美玲, 王洪伦, 索有瑞, 谢黎明, 柴禛. SiO2基底Nb原位掺杂MoS2纳米薄膜的制备及场效应[J]. 材料导报, 2019, 33(12): 1975-1982.
[10] 刘晓梅, 贺定勇, 周正, 王国红, 王曾洁, 吴旭. 微束等离子喷涂羟基磷灰石涂层相结构的微拉曼光谱研究[J]. 材料导报, 2019, 33(10): 1634-1639.
[11] 熊建功,张创伟,王 康,孔令仪,赵弋菲,陈 龙,李永涛. Sr、Co共掺多铁性材料BiFeO3的性能[J]. 《材料导报》期刊社, 2018, 32(10): 1582-1586.
[12] 郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
[13] 常艺, 裴久阳, 周苏生, 陈名海, 刘宁, 李清文. 功能化碳纳米管改性热塑性复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 84-90.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed