Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5008-5015    https://doi.org/10.11896/cldb.19030048
  材料与可持续发展(三)——环境友好材料与修复材料 |
多氯芳烃类污染物催化降解的研究进展
刘建坤1,2, 黄静1,2, 蒋廷学1,2, 吴春方1,2, 文佳鑫3, 许卓奇3, 马小东3, 王淑荣4
1 页岩油气富集机理与有效开发国家重点实验室,北京 100101;
2 中国石化石油工程技术研究院,北京 100101;
3 河北工业大学能源与环境工程学院,天津 300401;
4 南开大学化学系, 天津 300071
Research Progress of Catalytic Degradation of Polychlorinated Aromatic Pollutants: a Review
LIU Jiankun1,2, HUANG Jing1,2, JIANG Tingxue1,2, WU Chunfang1,2, WENG Jiaxin3, XU Zhuoqi3, MA Xiaodong3, WANG Shurong4
1 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100101, China;
2 Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China;
3 School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China;
4 Department of Chemistry, Nankai University, Tianjin 300071, China
下载:  全 文 ( PDF ) ( 2762KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着社会的发展和人们环保意识的提高,环境中存在的有机污染物问题得到了广泛关注。其中多氯芳烃类有机污染物(Polychlorinated aroma-tic pollutants,PCAPs)已成为全球瞩目的重要有机污染物之一。与常规污染物相比,PCAPs具有很强的生物累积性、环境持久性、高毒性、亲脂性和远距离迁移能力,使它们不仅易通过固体废弃物、液体污水和废气等方式分散于水生环境、土壤和大气环境中,而且容易通过生物链进入生态环境,同时也可以通过食物链进入人体脂肪组织、血液中,改变骨骼的结构和功能,从而对人类产生致畸、致癌、致突变的三致效应,因而PCAPs的控制、消除和降解技术已经成为环境领域的一个研究热点。
  目前,对于PCAPs的治理方法主要包括吸附法、高温热解法、微生物处理法、光催化法和催化降解法等。但前四种技术存在实际降解不完全、残渣废弃物多、对污染物处理成本较高、降解温度高、PCAPs低温易重新形成、耗时较长或造成更严重的二次污染等缺点而限制了它们的实际应用。
  相比之下,催化降解法具备反应温度低、产物矿化完全、降解效率高、安全性好、无二次污染等优点,被认为是去除环境中PCAPs最有效并具有很好应用前景的技术手段。在过去的几十年里,国内外研究人员对催化降解PCAPs催化剂进行了大量的研究,相关问题已经成为环境及催化领域的一个研究热点。
  本文对近几年来国内外催化降解PCAPs的主要研究成果和最新进展进行了系统综述,基于研究现状的分析,阐述了目前研究中PCAPs处理存在的问题和不足,并对其未来发展趋势进行了展望,以期为制备高效和环境友好的新型降解PCAPs催化剂提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘建坤
黄静
蒋廷学
吴春方
文佳鑫
许卓奇
马小东
王淑荣
关键词:  多氯芳烃类污染物  催化降解  催化剂    
Abstract: In recent years, organic pollutants in the environment have attracted wide attention. Among them, polychlorinated aromatic pollutants (PCAPs), one of the most important organic pollutants, have worldwide been concerned. Compared with conventional pollutants, PCAPs have strong bio-accumulation, environmental persistence, high toxicity, lipophilicity and long-distance migration capabilities, which make them easily dispersed in aquatic, soil and atmospheric environments through solid wastes, liquid sewage and exhaust gas. Thus they can easily enter the ecological environment through biological chains. Meanwhile, they can also invade human adipose tissue and blood through the food chain, which may bring teratogenic, carcinogenic and mutagenic effects. Therefore, the control, elimination and degradation technology of PCAPs has become a research hotspot in the field of environment protection.
  At present, the treatment methods of PCAPs mainly include adsorption, pyrolysis, microbial treatment, photocatalysis and catalytic degradation. However, the first four technologies have some shortcomings, such as incomplete degradation, large amount of residue, high treatment cost, high degradation temperature, regeneration of PCAPs, time-consuming or secondary pollution, which limit their practical application.
  In contrast, catalytic degradation has the advantages of low reaction temperature, complete mineralization, high degradation efficiency, good safety and secondary pollution-free, and thus is considered to be one of the most effective and promising technologies to remove PCAPs from the environment. In the past few decades, researchers have done a lot of researches on the catalysts for the catalytic degradation of PCAPs, which have developed one of research hot topics in the fields of environment protection and catalysis.
  In this paper, the main research results and the latest progress of catalytic degradation of PCAPs have been systematically reviewed. Based on the analysis of the current research situation, the existing problems and shortcomings in the treatment of PCAPs have been elaborated, and the future development trend has been prospected.
Key words:  polychlorinated aromatic pollutants    catalytic degradation    catalysts
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  O643  
基金资助: 国家自然科学基金(21571108;21876042;21677079);天津市应用基础与前沿技术研究计划重点项目(15JCZDJC40800);南开大学亚洲研究中心项目(AS1717);国家科技重大专项子课题(2017ZX07107-004-005)
通讯作者:  maxd@hebut.edu.cn   
作者简介:  刘建坤,2011年毕业于中国科学院研究生院,获得流体力学专业硕士学位,现为中国石化石油工程技术研究院副研究员,目前主要从事致密油气压裂改造工艺技术及实验机理研究工作;马小东,河北工业大学能源与环境工程学院教授、博士研究生导师。2006年7月于中科院生态环境研究中心获得环境科学专业博士学位。入选教育部新世纪优秀人才。主要从事环境污染控制技术的研究。近年来发表论文30余篇,包括Applied Catalysis B: Environmental、Physical Chemistry Chemical PhysicsApplied Catalysis A: General等期刊。
引用本文:    
刘建坤, 黄静, 蒋廷学, 吴春方, 文佳鑫, 许卓奇, 马小东, 王淑荣. 多氯芳烃类污染物催化降解的研究进展[J]. 材料导报, 2020, 34(5): 5008-5015.
LIU Jiankun, HUANG Jing, JIANG Tingxue, WU Chunfang, WENG Jiaxin, XU Zhuoqi, MA Xiaodong, WANG Shurong. Research Progress of Catalytic Degradation of Polychlorinated Aromatic Pollutants: a Review. Materials Reports, 2020, 34(5): 5008-5015.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19030048  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5008
1 Schecter A, Birnbaum L, Ryan J J, et al. Environmental Research, 2006, 101(3), 419.
2 Kulkarni P S, Crespo J G, Afonso C A M. Environment Internaional, 2008, 34(1), 139.
3 Chang Y M, Fan W P, Dai W C. Journal of Hazardous Materials, 2011, 192(2), 521.
4 Jivera-Austrui M A, Borrajo K, Martinez M A, et al. Chemosphere, 2011, 82(9), 1343.
5 Liu W, Tian Z, Li H, et al. Environmental Science & Technology, 2013, 47(17), 9774.
6 Zhang G, Hai J, Ren M, et al. Environmental Science & Technology, 2013, 47(4), 2123.
7 Shih T S, Chen H L. Journal of Hazardous Materials, 2009, 172(2-3), 1351.
8 Li S, Tian Y, Ding Q, et al. Chemosphere, 2014, 94, 164.
9 Hites R A. Environmental Science & Technology, 2011, 45(1), 16.
10 Zhang M M, Yang J, Buekens A, et al. Chemosphere, 2016, 159, 536.
11 Hou S, Altarawneh M, Kennedy E M, et al. Proceedings of the Combustion Institute, 2019, 37(1),1075.
12 Zazou H, Oturan N, Celebi M S, et al. Separation and Purification Technology, 2019, 208, 184.
13 Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, et al. Journal of Hazardous Materials, 2013, 260, 167.
14 Benitez J L, Angel G D. Industrial & Engineering Chemistry Research, 2010, 50, 2678.
15 Chmielewsk A G, Sun Y X, Bulka S, et al. Radiation Physics and Chemistry, 2004, 71, 435.
16 Zhou H Y, Xu X H, Wang D H. Chinese Journal of Chemical Enginee-ring, 2004, 12, 505.
17 Cametti M, Marti-Rujas J. Dalton Transactions, 2016, 45(47), 18832.
18 Zhu J, Zhan H L, Miao X Y, et al. Physical Chemistry Chemical Phy-sics, 2016, 18(39), 27175.
19 Bullot L, Ben Abda M, Simon-Masseron A, et al. Adsorption-Journal of the International Adsorption Society, 2017, 23(1), 101.
20 Addink R, Altwicker E R. Environmental Science & Technology, 2004, 38(19), 5196.
21 Cheung W H, Lee V K C, Mckay G. Environmental Science & Technology, 2007, 41(6), 2001.
22 Tong M, Yuan S H. Journal of Hazardous Materials, 2012, 229, 1.
23 Lindberg D, Molin C, Hupa M. Waste Management, 2015, 37, 82.
24 Higson F K, Focht D D. Applied and Environmental Microbiology, 1990, 56, 3678.
25 Ruddy E N, Carroll L A. Chemical Engineering Progress, 1993, 89, 28.
26 Tue N M, Goto A, Takahashi S, et al. Journal of Hazardous Materials, 2016, 302, 151.
27 Wu C H, Chang-Chien G P, Lee W S. Journal of Hazardous Materials, 2004, 114, 191.
28 Wu C H, Ng H Y. Journal of Hazardous Materials, 2008, 151, 507.
29 Lu S Y, Wang Q L, Buekens A G, et al. Chemical Engineering Journal, 2012, 195, 233.
30 Boukha Z, Gonzalez-Prior J, de Rivas B, et al. Journal of Industrial and Engineering Chemistry, 2018, 57, 77.
31 Ma X D, Sun H W, He H, et al. Catalysis Letters, 2007, 119, 142.
32 Delaigle R, Debecker D P, Bertinchamps F, et al. Top in Catalysis, 2009, 52, 501.
33 Finocchio E, Busca G, Notaro M. Applied Catalysis B: Environmental, 2006, 62(1-2), 12.
34 Altarawneh M, Dlugogorski B Z, Kennedy E M, et al. Progress in Energy and Combustion Science, 2009, 35(3),245.
35 Field J A, Sierra-Alvarez R. Chemosphere, 2008, 71(6), 1005.
36 van den Brink R W, Krzan M, Feijen-Jeurissen M M R, et al. Applied Catalysis B: Environmental, 2000, 24, 255.
37 Scirè S, Minicò S, Crisafulli C. Applied Catalysis B: Environmental, 2003, 45, 117.
38 Aristizábal B H, Maya C, de Correa C M. Applied Catalysis A: General, 2008, 335, 211.
39 Haines B M, Gland J L. Surface Science, 2008, 602, 1892.
40 Lingaiah N, Babu N S, Gopinath R, et al. Catalysis Surveys from Asia, 2006, 10(1), 29.
41 Giraudon J M, Nguyen T B, Leclercq G, et al. Catalysis Today, 2008, 137(2-4), 379.
42 Giraudon J M, Elhachimi A, Leclercq G. Applied Catalysis B: Environmental, 2008, 84(1-2), 251.
43 Celik G, Ailawar S A, Gunduz S, et al. Catalysis Today, 2019, 323, 129.
44 Dai Q G, Bai S X, Wang Z Y, et al. Applied Catalysis B: Environmental, 2012, 126, 64.
45 Dai Q G, Bai S X, Wang X Y, et al. Applied Catalysis B: Environmental, 2013, 129, 580.
46 Dai Q G, Bai S X, Wang J W, et al. Applied Catalysis B: Environmental, 2013, 142, 222.
47 Huang H, Dai Q G, Wang X Y, Applied Catalysis B: Environmental, 2014, 158, 96.
48 Gopinath R, Lingaiah N, Sreedhar B, et al. Applied Catalysis B: Environmental, 2003, 46, 587.
49 Zhang W, Huang Y, Gong T, et al. Catalysis Communications, 2017, 93, 47.
50 Aristizabal B H, de Correa C M, Serykh A I, et al. Journal of Catalysis, 2008, 258(1), 95.
51 Aristizabal B H, de Correa C M, Serykh A I, et al. Microporous and Mesoporous Materials, 2008, 112(1-3), 432.
52 Cano M, Guarín F, Aristizábal B, et al. Catalysis Today, 2017, 296, 105.
53 Paukshtis E A, Simonova L G, Zagoruiko A N, et al. Chemosphere, 2010, 79, 199.
54 Gu Y F, Cai T, Gao X H, et al. Applied Catalysis B: Environmental, 2019, 248, 264.
55 Scirè S, Minicò S, Crisafulli C, et al. Studies in Surface Science and Catalysis, 2002, 142, 1023.
56 Delaigle R, Eloy P, Gaigneaux E M. Catalysis Today, 2011, 175, 177.
57 Yang P, Yang S, Shi Z, et al. Applied Catalysis B: Environmental, 2015, 162, 227.
58 Wu L Y, He F, Luo J Q, et al. RSC Advances, 2017, 7, 26952.
59 Zhao S, Ma X D, Pang Q, et al. Physical Chemistry Chemical Physics, 2014, 16(12), 5553.
60 Ma X D, Shen J S, Pu W Y, et al. Applied Catalysis A: General, 2013, 466, 68.
61 Sun P, Wang W, Dai X, et al. Applied Catalysis B: Environmental, 2016, 198, 389.
62 Ren Y, Tang A, Hu L, et al. H. RSC Advances, 2016, 6, 46822.
63 Wang J, Wang X, Liu X L, et al. Catalysis Today, 2015, 241, 92.
64 Chen J, Chen X, Chen X, et al. Applied Catalysis B: Environmental, 2018, 224, 825.
65 Yang S, Zhao H J, Dong F, et al. Molecular Catalysis, 2019, 463, 119.
66 Huang H, Gu Y F, Zhao J, et al. Journal of Catalysis, 2015, 326, 54.
67 Deng W, Dai Q G, Lao Y J, et al. Applied Catalysis B: Environmental, 2016, 181, 848.
68 Wang Q L, Hung P C, Lu S A, et al. Chemosphere, 2016, 159, 132.
69 Tian W, Fan X Y, Yang H S, et al. Catalysis Communications, 2010, 11, 1185.
70 Ma X D, Suo X Y, Cao H Q, et al. Physical Chemistry Chemical Phy-sics, 2014, 16, 12731.
71 Wang L, Huan Q X, Wu H F, et al. Chemosphere, 2016, 144, 2343.
72 Wang Q L, Tang M H, Peng Y Q, et al. Chemosphere, 2018, 199, 502.
73 Yu M, Li W, Li X, et al. Chemosphere, 2016, 156, 383.
74 Huang X, Peng Y, Liu X, et al. Catalysis Communications, 2015, 69, 161.
75 Ji L J, Cao X, Lu S Y, et al. Journal of Hazardous Materials, 2018, 342, 220.
76 Dai Y, Wang X Y, Dai Q G, et al. Applied Catalysis B: Environmental, 2012, 111, 141.
77 Yu D, Wang X Y, Dao L, et al. Journal of Hazardous Materials, 2011, 188, 132.
78 Zhan M X, Ji L J, Ma Y F, et al. Waste Management, 2018, 78, 249.
79 Tao F, Yang S S, Yang P, et al. Journal of Rare Earths, 2016, 34, 381.
80 Zhao H J, Han W L, Dong F Z, et al. Journal of Industrial and Engineering Chemistry, 2018, 64, 194.
81 Tang A D, Hu L Q, Yang X H, et al. Catalysis Communications, 2016, 82, 41.
82 Long G Y, Chen M X, Li Y J, et al. Chemical Engineering Journal, 2019, 360, 964.
83 Kan J W, Deng L, Li B, et al. Applied Catalysis B: General, 2017, 530, 21.
84 Zhan M X, Fu J Y, Ji L J, et al. Chemosphere, 2018, 191, 895.
85 Mao D, He F, Zhao P, et al. RSC Advances, 2015, 5(13), 10040.
86 Zhang Z, Huang J, Xia H Q, et al. Journal of Catalysis, 2018, 360, 277.
87 Ma X D, Sun H W, Liu W B, et al. Fresenius Environmental Bulletin, 2007, 16, 745.
88 Ma X D, Feng X, Guo J, et al. Applied Catalysis B: Environmental, 2014, 147, 666.
89 Fan X Y, Yang H S, Tian W, et al. Catalsis Letters, 2011, 141,158.
90 Ma X D, Zhao M Y, Pang Q, et al. Applied Catalysis A: General, 2016, 522, 70.
91 Ma X D, Sun H W, He H, et al. Applied Catalysis A: General, 2013, 450, 143.
[1] 朱文娟,高凤雨,唐晓龙,易红宏,于庆君,赵顺征. 尖晶石型催化剂的制备及在气态污染物净化中的应用综述[J]. 材料导报, 2020, 34(3): 3044-3055.
[2] 李惠惠,张圆正,代云容,于艳新,殷立峰. 单原子光催化剂的合成、表征及在环境与能源领域的应用[J]. 材料导报, 2020, 34(3): 3056-3068.
[3] 邵阳阳, 靳惠明, 俞亮, 高吉成, 陈悦蓉. Mo掺杂Co-B非晶态合金的制备及催化硼氢化钠水解制氢性能[J]. 材料导报, 2020, 34(2): 2063-2066.
[4] 祝一锋, 黄小钢, 朱文仙, 张攀攀, 唐华东. 原位光催化聚合制备聚(N-乙烯基咔唑)/TiO2纳米复合材料及其光催化性能[J]. 材料导报, 2020, 34(2): 2147-2152.
[5] 刘大波, 苏向东, 赵宏龙. 光催化分解水制氢催化剂的研究进展[J]. 材料导报, 2019, 33(Z2): 13-19.
[6] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[7] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[8] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[9] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[10] 王红琴, 谢继阳, 安霓虹, 戴云生, 唐春, 刘俊, 沈亚峰, 周伟. 钌基催化剂催化苯部分加氢制环己烯的研究进展[J]. 材料导报, 2019, 33(23): 4016-4024.
[11] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[12] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[13] 施露, 张杰, 陈蓉, 沈美庆, 单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[14] 闫静, 田晓, 赵宣, 赵丽娟, 杨艳春, 陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[15] 张宇, 王敏, 周鑫, 杨光俊, 柴天煜, 朱彤. Bi2MoO6/BiVO4异质结光催化剂的制备及性能[J]. 材料导报, 2019, 33(10): 1597-1601.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed