Please wait a minute...
材料导报  2019, Vol. 33 Issue (2): 342-346    https://doi.org/10.11896/cldb.201902026
  高分子与聚合物基复合材料 |
含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能
刘新华1,2, 储兆洋1, 李永1, 郑宏亮1, 方寅春1
1 安徽工程大学纺织服装学院,芜湖 241000
2 安徽省纺织行业科技公共服务平台,芜湖 241000
Preparation of Feather Grafted Copolymer Containing Poly(Dimethylaminoethyl Methacrylate) and Its Properties
LIU Xinhua1,2, CHU Zhaoyang1, LI Yong1, ZHENG Hongliang1, FANG Yinchun1
1 College of Textile & Clothing, Anhui Polytechnic University, Wuhu 241000
2 Anhui Province Technology Public Service Platform for Textile Industry, Wuhu 241000
下载:  全 文 ( PDF ) ( 2529KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用电子转移活化再生催化剂原子转移自由基聚合(ARGET ATRP)的方法,以羽毛表面的溴为引发位点,引发甲基丙烯酸二甲氨基乙酯(DMAEMA)在羽毛表面自增长,制备含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物(Feather-g-PDMAEMA)。再以溴乙烷为改性试剂,对其进行季铵化处理,制备具有抗菌性能的羽毛接枝共聚物。改性后羽毛的元素含量、官能团、热稳定性、结晶结构、表面形貌分别通过能谱仪(EDS)、傅里叶变换红外光谱仪(FT-IR)、热重分析仪(TGA)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)进行表征。FT-IR和SEM分析结果表明,甲基丙烯酸二甲氨基乙酯成功地接枝到羽毛的表面,所得羽毛接枝共聚物的接枝率最高可达84.7%;XRD的分析结果显示,接枝聚合后的羽毛的结晶度降低;TGA分析结果显示,接枝聚合后的羽毛热稳定性降低;抗菌测试结果表明,季铵化处理后的Feather-g-PDMAEMA具有良好的抗菌效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘新华
储兆洋
李永
郑宏亮
方寅春
关键词:  羽毛  甲基丙烯酸二甲氨基乙酯(DMAEMA)  抗菌  接枝共聚物  电子转移活化再生催化剂原子转移自由基聚合(ARGET  ATRP)    
Abstract: The feather grafted copolymer containing poly(dimethylaminoethyl methacrylate) (Feather-g-PDMAEMA) was synthesized via electron transfer atom transfer radical polymerization (ARGET ATRP), taking the carbonyl bromide groups on the feather surface as initiator and 2-(dimethylamino)ethyl methacrylate (DMAEMA) as grafting monomer. Subsequently, the DMAEMA grafted feather was quaternized by modification reagent bromoethane, and the feather grafted polymer with antibacterial properties was acquired. Furthermore, EDS, FT-IR, TGA, XRD and SEM were employed to characterize the element content, chemical structure, thermal stability, crystalline structure and surface morphology of the modified feather. The results of FT-IR and SEM analysis verified that 2-(dimethylamino)ethyl methacrylate was successfully grafted onto the surface of feather and the grafting rate of Feather-g-PDMAEMA could be as high as 84.7%. The results of XRD indicated that the crystallinity of feathers declined after grafting polymerization. It could be found from the results of TGA analysis, there was a certain decrease in the thermal stability of Feather-g-PDMAEMA. As revealed by antibacterial test, quaternized Feather-g-PDMAEMA possessed favorable antibacterial effect.
Key words:  feather    2-(dimethylamino)ethyl methacrylate(DMAEMA)    antibacterial effect    graft copolymer    via electron transfer for atom transfer radical polymerization (ARGET ATRP)
                    发布日期:  2019-01-31
ZTFLH:  TQ341.5  
基金资助: 国家自然科学基金(21302001);安徽省重大科技专项(16030701088)
作者简介:  刘新华,安徽工程大学纺织服装学院,教授。1989年毕业于湖北化学研究所,获得理学硕士学位。liuxinhua66@163.com
引用本文:    
刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
LIU Xinhua, CHU Zhaoyang, LI Yong, ZHENG Hongliang, FANG Yinchun. Preparation of Feather Grafted Copolymer Containing Poly(Dimethylaminoethyl Methacrylate) and Its Properties. Materials Reports, 2019, 33(2): 342-346.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201902026  或          http://www.mater-rep.com/CN/Y2019/V33/I2/342
1 Guo J H, Li T, Zhao T T,et al. Chinese Polymer Bulletin,2014(4),16(in Chinese).
郭菊花,李涛,赵婷婷,等.高分子通报,2014(4),16.
2 Bansal G, Singh V K, Gope P C, et al. Journal of Graphic Era University,2017,5(1),16.
3 De Silva R, Wang X, Byrne N. Carbohydrate Polymers,2016,153,115.
4 Bongarde U S, Shinde V D. International Journal of Engineering Science and Innovative Technology,2014,3(2),431.
5 Rai S K, Mukherjee A K. Biocatalysis and Agricultural Biotechnology,2015,4(4),632.
6 Yang C L, Guan L T, Zhao Y M, et al. Ion Exchange and Adsorption,2007,23(3),259(in Chinese).
杨崇岭,关丽涛,赵耀明,等.离子交换与吸附,2007,23(3),259.
7 Li M L, Jin E Q, Lian Y Y. Journal of Textile Research,2017,38(5),75(in Chinese).
李曼丽,金恩琪,连瑶瑶.纺织学报,2017,38(5),75.
8 Jin E, Reddy N, Zhu Z, et al. Journal of Agricultural and Food Chemistry,2011,59(5),1729.
9 Keating IV J J, Lee A, Belfort G. Macromolecules,2017,50(20),7930.
10 Lee B S, Kim H, Choi I S, et al. Journal of Polymer Science Part A: Polymer Chemistry,2017,55(2),329.
11 Ou K, Wu X, Wang B, et al. Cellulose,2017,24(11),5211.
12 Jiang F, Wang Z, Qiao Y, et al. Macromolecules,2013,46(12),4772.
13 Li C L, Liu Q, Wang Z Q, et al. Journal of Textile Research,2014,35(7),23(in Chinese).
李长龙,刘琼,王宗乾,等.纺织学报,2014,35(7),23.
14 Xu X, Jiang S, Wang X Y, et al. Chemistry Bulletin,2018,81(2),109(in Chinese).
徐潇,蒋姗,王秀瑜,等.化学通报,2018,81(2),109.
[1] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[2] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[3] 李丹, 张忞灏, 廖佩姿, 谢远, 甄贺伟, 徐晓玲, 周祚万. 低维氧化锌晶面调控及催化抗菌活性研究进展[J]. 材料导报, 2019, 33(1): 56-64.
[4] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[5] 王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
[6] 陈志, 孙聪, 朱亚楠, 葛明桥. 熔融纺丝制备的PET/锗复合纤维:负离子释放性能、远红外辐射性能及抗菌性能[J]. 《材料导报》期刊社, 2018, 32(8): 1333-1337.
[7] 陈曼, 何明, 郭妍婷, 尹国强. 静电纺羽毛角蛋白/聚乙烯醇/聚氧化乙烯纳米纤维膜的交联改性及表征[J]. 《材料导报》期刊社, 2018, 32(8): 1218-1223.
[8] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[9] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[10] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[11] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[12] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[13] 何明,窦瑶,陈曼,尹国强,崔英德,陈循军. 羽毛角蛋白/PVA复合纳米纤维膜的制备及表征[J]. 《材料导报》期刊社, 2018, 32(2): 198-202.
[14] 姚一军,王鸿儒. 纤维素化学改性的研究进展[J]. 材料导报, 2018, 32(19): 3478-3488.
[15] 杨守禄, 罗莎, 章磊, 姬宁, 李丹, 吴义强. 木塑复合材料功能化改性研究进展[J]. 材料导报, 2018, 32(17): 3090-3098.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed