Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1333-1337    https://doi.org/10.11896/j.issn.1005-023X.2018.08.024
  材料研究 |
熔融纺丝制备的PET/锗复合纤维:负离子释放性能、远红外辐射性能及抗菌性能
陈志, 孙聪, 朱亚楠, 葛明桥
江南大学生态纺织教育部重点实验室,无锡 214122
PET/Germanium Fibrous Composite Fabricated by Melt Spinning Technique: Negative Air Ions Emission, Far-infrared Emission and Antibacterial Properties
CHEN Zhi, SUN Cong, ZHU Yanan, GE Mingqiao
Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122
下载:  全 文 ( PDF ) ( 1599KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究不同无机锗粉含量的PET/锗复合纤维的负离子发射、远红外辐射以及抗菌性能,采用熔融复合纺丝法制备了无机锗粉质量分数为1%—3%的PET/锗复合纤维。利用扫描电子显微镜(SEM)、XRD对纤维的表面和横截面形貌、物相结构进行了表征。结果表明,无机锗粉均匀地分散在纤维中,没有出现团聚现象。复合纤维的XRD图中在2θ=17.4°、24.1°、27°、33.5°、51.7°处出现了Ge-O的特征衍射峰,表明锗粉的晶格结构没有被纺丝的高温破坏。此外,负离子发射、远红外辐射以及抗菌性能测试表明,纤维的负离子发射量与纤维内部的锗含量成正比,当锗含量为3%时,达到1 470个/cm3。在25~70 ℃范围内,纤维产生的负离子数量随温度的升高而增加,当温度超过70 ℃时,纤维产生的负离子数量基本达到饱和。当锗含量增加至3%时,PET/锗复合纤维的法向远红外发射率达到最大值0.9,12 h内复合纤维对金黄色葡萄球菌的抑菌率达到97.8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈志
孙聪
朱亚楠
葛明桥
关键词:  无机锗粉  负离子  远红外  抗菌  复合纤维  熔融纺丝    
Abstract: In order to investigate the negative air ions (NAI) releasing, far infrared emission and antibacterial properties of the PET/germanium fibrous composite, PET/germanium fibrous composite containing 1%—3% inorganic germanium (Ge) particles were prepared using the melt-spinning method. The surface and cross section morphology and the crystal phase structure of the composite fibers were characterized by SEM and XRD. The results showed that the inorganic Ge particles were uniformly dispersed in the fibrous composite, no agglomeration appeared. The characteristic diffraction peaks of the Ge-O was occurred at 2θ=17.4°, 24.1°, 27°, 33.5° and 51.7° in the XRD patterns of the fibrous composite, implying that the crystal structure of the Ge particles was not destroyed by the high temperature of melt-spinning. Besides, the NAI, far infrared emission showed that the value of NAI released by the PET/Ge fibrous composite was proportional to the concentration of Ge particles, which reached as high as 1 470 ions/cm3 when the mass fraction of the Ge was 3%. Furthermore, the NAI increased gradually along with temperature in the range of 25—70 ℃, and the value got to the maximum when the temperature rose to 70 ℃. Additionally, the far infrared emissivity reached the maximum of 0.9 when the adding 3% of Ge. The antimicrobial test illustrated that antibacterial activity of the fibrous composite against the S. aureus reached to 97.8% in 12 h when the Ge powders concentration was 3%.
Key words:  inorganic germanium    negative air ions    far infrared emission    antibacterial    fibrous composite    melt spinning
               出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TS156  
基金资助: 国家自然科学基金(21171074/B010201;51503082);江苏高校优势学科建设工程资助项目;2016年度江苏省普通高校学术学位研究生科研创新计划项目(KYLX16_0796)
通讯作者:  葛明桥:通信作者,男,1957年生,博士,教授,研究方向为差别化纤维的制备与产业化 E-mail:ge_mingqiao@126.com   
作者简介:  陈志:男,1989年生,博士,主要研究方向为功能纤维的制备 E-mail:ericchenzhi@163.com
引用本文:    
陈志, 孙聪, 朱亚楠, 葛明桥. 熔融纺丝制备的PET/锗复合纤维:负离子释放性能、远红外辐射性能及抗菌性能[J]. 《材料导报》期刊社, 2018, 32(8): 1333-1337.
CHEN Zhi, SUN Cong, ZHU Yanan, GE Mingqiao. PET/Germanium Fibrous Composite Fabricated by Melt Spinning Technique: Negative Air Ions Emission, Far-infrared Emission and Antibacterial Properties. Materials Reports, 2018, 32(8): 1333-1337.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.024  或          http://www.mater-rep.com/CN/Y2018/V32/I8/1333
1 Bonnie B, Randall F, Joseph A, et al. Controlled trial evaluation of exposure duration to negative air ions for the treatment of seasonal affective disorder[J].Psychiatry Research,2018,259:7.
2 Sirota T V, Safronova V G, Amelina A G, et al. The effect of negative air ions on the respiratory organs and blood[J].Biophysics,2008,53:457.
3 Vanessa P, Dominik D A, William H B. Air ions and mood outcomes: A review and meta-analysis[J].BMC Microbiology,2013,13:29.
4 Tomoo R, Ichirou K, Tomonobu S. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise[J].International Journal of Biometeorology,1998,41(3):132.
5 Zhang Kaijun, Li Qingshan, Hong Wei, et al. Research progress in anion functional fiber and textile[J].Materials Review,2017(S1):360(in Chinese).
张凯军,李青山,洪伟,等.负离子功能纤维及其纺织品的研究进展[J].材料导报,2017(专辑29):360.
6 Zhang Xingxiang. Study and development of the far-infrared fibers and fabrics[J].Journal of Textile Research,1994,15(11):530(in Chinese).
张兴祥.远红外纤维和织物及其研究与发展[J].纺织学报,1994,15(11):530.
7 Dai Yingying, Wang Qinyun. New thermal insulation material-far infrared fiber[J].Industrial Textiles,1991,9(1):5(in Chinese).
戴莹瑛,王琴云.新型保温材料-远红外纤维[J].产业用纺织品,1991,9(1):5.
8 Xue Xiaochuan. Development and application of far infrared fiber[J].Chemical Fiber and Textile Technology,2003,32(4):19(in Chinese).
薛孝川.远红外纤维的发展和应用[J].化纤和纺织技术,2003,32(4):19.
9 Ye Yuanjing, Yuan Xiaohong. Research progress and application of the negative ions textiles[J].Advanced Textile Technology,2006,14(3):52(in Chinese).
叶远静,袁小红.负离子纺织品研究进展及应用[J].现代纺织技术,2006,14(3):52.
10 Zhang Kaijun, Li Qingshan, Luo Jinqiong, et al. Preperation and characterization of anion functional polyester fiber[J].Journal of Functional Materials,2017,48(9):09184(in Chinese).
张凯军,李青山,罗金琼,等.负离子功能聚酯短纤维的制备及表征[J].功能材料,2017,48(9):09184.
11 Fuat Y Tourmal. Software package for tourmaline, tourmaline-rich rocks and related ore deposits[J].Computers and Geosciences,1997,23(9):947.
12 Wu Ruihua, Tang Yunhui, Zhang Xiaohui. A study of crystal structural characteristics and environmental properties of natural cryptomelane[J].Acta Petrologica Et Mineralogica,2001,20(4):474(in Chinese).
吴瑞华,汤云晖,张晓晖.电气石的电场效应及其在环境领域中的应用前景[J].岩石矿物杂志,2001,20(4):474.
13 Erwin R. Germanium: Environmental occurrence, importance and speciation[J].Reviews in Environmental Science and Bio-Technology,2009,8(1):29.
14 Huang Yunlong, Zheng Shuilin, Li Yang, et al. Tourmaline proces-sing application status and development prospects[J].China Non-Metallic Mining Industry Herald,2003(4):18(in Chinese).
黄云龙,郑水林,李杨,等.电气石的加工应用现状及发展前景[J].中国非金属矿工业导刊,2003(4):18.
15 Qiu Fagui, Li Quanming, Zhang Mei, et al. New research progress in anion fiber and textile[J].Hi-Tech Fiber & Application,2008(3):19(in Chinese).
邱发贵,李全明,张梅,等.负离子纤维及其纺织品的研究进展[J].高科技纤维与应用,2008(3):19.
16 Li Hecheng. Infrared optical materials-germanium[J].Journal of Lasers & Infrared,1980(7):3(in Chinese).
李贺成.红外光学材料-锗[J].激光与红外,1980(7):3.
17 Kuo C J, Fan C C, Su T L. Nano composite fiber process optimization for polypropylene with antibacterial and far-infrared ray emission properties[J].Textile Research Journal,2016,86(16):1677.
18 Wang Wei. Characteristics of negative air ion concentration and its relationships with environmental factors[J].Ecology and Environment Sciences,2014,23(6):979(in Chinese).
王薇.空气负离子浓度分布特征及其与环境因子的关系[J].生态环境学报,2014,23(6):979.
19 Wang Wei, Yu Zhuang, Ji Fengquan. Evaluation of air cleanness degree of the urban environment based on negative air ion concentration[J].Ecology and Environment Sciences,2013,22(2):298(in Chinese).
王薇,余庄,冀凤全.基于空气负离子浓度的城市环境空气清洁度评价[J].生态环境学报,2013,22(2):298.
20 Huang Fengping, Lei Jian, Li Ying. Study of anion antibacterial nanocomposite ceramics[J].Bulletin of the Chinese Ceramic Society,2006,25(5):147(in Chinese).
黄凤萍,雷建,李缨.负离子抗菌复合陶瓷研究[J].硅酸盐通报,2006,25(5):147.
21 Zhang Shuang, Li Qingshan, Zhang Min, et al. Preparation and performance of the anions releasing antibacterial colorful polyester composite staple fiber[J].Synthetic Fibers,2011(3):21(in Chinese).
张爽,李青山,张敏,等.释放负离子的天然矿石色抗菌复合涤纶短纤维[J].合成纤维,2011(3):21.
22 Zhang Yi, Liu Ye, Zhang Hao, et al. Preparation and properties of amino acid modified chitosan antibacterial material[J].Journal of Functional Materials,2017,48(11):11026(in Chinese).
张毅,刘叶,张昊,等.氨基酸改性壳聚糖抗菌材料制备及其性能研究[J].功能材料,2017,48(11):11026.
23 Mo Zunli, Hu Rere, Wang Yawen, et al. Review of antibacterial materials and their mechanisms[J].Materials Review B: Research,2014,28(1):50(in Chinese).
莫尊理,胡惹惹,王雅雯,等.抗菌材料及其抗菌机理[J].材料导报:研究篇,2014,28(1):50.
[1] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[2] 刘新华, 储兆洋, 李永, 郑宏亮, 方寅春. 含聚甲基丙烯酸二甲氨基乙酯刷的羽毛接枝共聚物的制备及性能[J]. 材料导报, 2019, 33(2): 342-346.
[3] 刘俊莉, 邵建真, 李军奇, 刘辉, 谢乔. 新型ZnO/BiOI杂化纳米花的合成及可见光驱动抗菌活性[J]. 材料导报, 2019, 33(2): 205-210.
[4] 李丹, 张忞灏, 廖佩姿, 谢远, 甄贺伟, 徐晓玲, 周祚万. 低维氧化锌晶面调控及催化抗菌活性研究进展[J]. 材料导报, 2019, 33(1): 56-64.
[5] 赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
[6] 王迎军, 黄雪连, 陈军建, 梁阳彬, 熊梦华. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15.
[7] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[8] 张雪荣, 胡银春, 席少晖, 王兆伟, 战岩, 黄棣, 胡超凡, 魏延. 静电纺β-环糊精/石墨烯载银抗菌纤维膜的制备与表征[J]. 《材料导报》期刊社, 2018, 32(4): 545-548.
[9] 李森, 王清涛, 于华芹, 徐会君, 杜庆洋. 固相离子交换法制备高效载银分子筛抗菌剂及其抗菌性能[J]. 《材料导报》期刊社, 2018, 32(4): 539-544.
[10] 李旭飞, 车阳丽, 吕艳, 刘芳, 王永强, 赵朝成. 壳聚糖/无机物纳米复合材料在抗菌方面的研究进展[J]. 材料导报, 2018, 32(21): 3823-3830.
[11] 郑康, 郑敏, 黄鹏杰, 赵松铭, 沈凯旋. Cu2O/TiO2复合物的制备及抗菌和除氨气性能[J]. 材料导报, 2018, 32(20): 3504-3509.
[12] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[13] 杨守禄, 罗莎, 章磊, 姬宁, 李丹, 吴义强. 木塑复合材料功能化改性研究进展[J]. 材料导报, 2018, 32(17): 3090-3098.
[14] 王静, 王晓燕, 水中和, 冀志江, 赵春艳, 刘蕊蕊. 玻璃载银抗菌材料的Ag+溶出性质及与大肠杆菌作用机理[J]. 材料导报, 2018, 32(16): 2709-2714.
[15] 惠爱平, 马建中, 刘俊莉. 微波辅助水热法合成的可见光响应型Sm掺杂ZnO微晶的
光催化性能和抗菌活性*
[J]. 《材料导报》期刊社, 2017, 31(2): 13-19.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed