Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1333-1337    https://doi.org/10.11896/j.issn.1005-023X.2018.08.024
  材料研究 |
熔融纺丝制备的PET/锗复合纤维:负离子释放性能、远红外辐射性能及抗菌性能
陈志, 孙聪, 朱亚楠, 葛明桥
江南大学生态纺织教育部重点实验室,无锡 214122
PET/Germanium Fibrous Composite Fabricated by Melt Spinning Technique: Negative Air Ions Emission, Far-infrared Emission and Antibacterial Properties
CHEN Zhi, SUN Cong, ZHU Yanan, GE Mingqiao
Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122
下载:  全 文 ( PDF ) ( 1599KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究不同无机锗粉含量的PET/锗复合纤维的负离子发射、远红外辐射以及抗菌性能,采用熔融复合纺丝法制备了无机锗粉质量分数为1%—3%的PET/锗复合纤维。利用扫描电子显微镜(SEM)、XRD对纤维的表面和横截面形貌、物相结构进行了表征。结果表明,无机锗粉均匀地分散在纤维中,没有出现团聚现象。复合纤维的XRD图中在2θ=17.4°、24.1°、27°、33.5°、51.7°处出现了Ge-O的特征衍射峰,表明锗粉的晶格结构没有被纺丝的高温破坏。此外,负离子发射、远红外辐射以及抗菌性能测试表明,纤维的负离子发射量与纤维内部的锗含量成正比,当锗含量为3%时,达到1 470个/cm3。在25~70 ℃范围内,纤维产生的负离子数量随温度的升高而增加,当温度超过70 ℃时,纤维产生的负离子数量基本达到饱和。当锗含量增加至3%时,PET/锗复合纤维的法向远红外发射率达到最大值0.9,12 h内复合纤维对金黄色葡萄球菌的抑菌率达到97.8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈志
孙聪
朱亚楠
葛明桥
关键词:  无机锗粉  负离子  远红外  抗菌  复合纤维  熔融纺丝    
Abstract: In order to investigate the negative air ions (NAI) releasing, far infrared emission and antibacterial properties of the PET/germanium fibrous composite, PET/germanium fibrous composite containing 1%—3% inorganic germanium (Ge) particles were prepared using the melt-spinning method. The surface and cross section morphology and the crystal phase structure of the composite fibers were characterized by SEM and XRD. The results showed that the inorganic Ge particles were uniformly dispersed in the fibrous composite, no agglomeration appeared. The characteristic diffraction peaks of the Ge-O was occurred at 2θ=17.4°, 24.1°, 27°, 33.5° and 51.7° in the XRD patterns of the fibrous composite, implying that the crystal structure of the Ge particles was not destroyed by the high temperature of melt-spinning. Besides, the NAI, far infrared emission showed that the value of NAI released by the PET/Ge fibrous composite was proportional to the concentration of Ge particles, which reached as high as 1 470 ions/cm3 when the mass fraction of the Ge was 3%. Furthermore, the NAI increased gradually along with temperature in the range of 25—70 ℃, and the value got to the maximum when the temperature rose to 70 ℃. Additionally, the far infrared emissivity reached the maximum of 0.9 when the adding 3% of Ge. The antimicrobial test illustrated that antibacterial activity of the fibrous composite against the S. aureus reached to 97.8% in 12 h when the Ge powders concentration was 3%.
Key words:  inorganic germanium    negative air ions    far infrared emission    antibacterial    fibrous composite    melt spinning
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TS156  
基金资助: 国家自然科学基金(21171074/B010201;51503082);江苏高校优势学科建设工程资助项目;2016年度江苏省普通高校学术学位研究生科研创新计划项目(KYLX16_0796)
通讯作者:  葛明桥:通信作者,男,1957年生,博士,教授,研究方向为差别化纤维的制备与产业化 E-mail:ge_mingqiao@126.com   
作者简介:  陈志:男,1989年生,博士,主要研究方向为功能纤维的制备 E-mail:ericchenzhi@163.com
引用本文:    
陈志, 孙聪, 朱亚楠, 葛明桥. 熔融纺丝制备的PET/锗复合纤维:负离子释放性能、远红外辐射性能及抗菌性能[J]. 《材料导报》期刊社, 2018, 32(8): 1333-1337.
CHEN Zhi, SUN Cong, ZHU Yanan, GE Mingqiao. PET/Germanium Fibrous Composite Fabricated by Melt Spinning Technique: Negative Air Ions Emission, Far-infrared Emission and Antibacterial Properties. Materials Reports, 2018, 32(8): 1333-1337.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.024  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1333
1 Bonnie B, Randall F, Joseph A, et al. Controlled trial evaluation of exposure duration to negative air ions for the treatment of seasonal affective disorder[J].Psychiatry Research,2018,259:7.
2 Sirota T V, Safronova V G, Amelina A G, et al. The effect of negative air ions on the respiratory organs and blood[J].Biophysics,2008,53:457.
3 Vanessa P, Dominik D A, William H B. Air ions and mood outcomes: A review and meta-analysis[J].BMC Microbiology,2013,13:29.
4 Tomoo R, Ichirou K, Tomonobu S. The effect of exposure to negative air ions on the recovery of physiological responses after moderate endurance exercise[J].International Journal of Biometeorology,1998,41(3):132.
5 Zhang Kaijun, Li Qingshan, Hong Wei, et al. Research progress in anion functional fiber and textile[J].Materials Review,2017(S1):360(in Chinese).
张凯军,李青山,洪伟,等.负离子功能纤维及其纺织品的研究进展[J].材料导报,2017(专辑29):360.
6 Zhang Xingxiang. Study and development of the far-infrared fibers and fabrics[J].Journal of Textile Research,1994,15(11):530(in Chinese).
张兴祥.远红外纤维和织物及其研究与发展[J].纺织学报,1994,15(11):530.
7 Dai Yingying, Wang Qinyun. New thermal insulation material-far infrared fiber[J].Industrial Textiles,1991,9(1):5(in Chinese).
戴莹瑛,王琴云.新型保温材料-远红外纤维[J].产业用纺织品,1991,9(1):5.
8 Xue Xiaochuan. Development and application of far infrared fiber[J].Chemical Fiber and Textile Technology,2003,32(4):19(in Chinese).
薛孝川.远红外纤维的发展和应用[J].化纤和纺织技术,2003,32(4):19.
9 Ye Yuanjing, Yuan Xiaohong. Research progress and application of the negative ions textiles[J].Advanced Textile Technology,2006,14(3):52(in Chinese).
叶远静,袁小红.负离子纺织品研究进展及应用[J].现代纺织技术,2006,14(3):52.
10 Zhang Kaijun, Li Qingshan, Luo Jinqiong, et al. Preperation and characterization of anion functional polyester fiber[J].Journal of Functional Materials,2017,48(9):09184(in Chinese).
张凯军,李青山,罗金琼,等.负离子功能聚酯短纤维的制备及表征[J].功能材料,2017,48(9):09184.
11 Fuat Y Tourmal. Software package for tourmaline, tourmaline-rich rocks and related ore deposits[J].Computers and Geosciences,1997,23(9):947.
12 Wu Ruihua, Tang Yunhui, Zhang Xiaohui. A study of crystal structural characteristics and environmental properties of natural cryptomelane[J].Acta Petrologica Et Mineralogica,2001,20(4):474(in Chinese).
吴瑞华,汤云晖,张晓晖.电气石的电场效应及其在环境领域中的应用前景[J].岩石矿物杂志,2001,20(4):474.
13 Erwin R. Germanium: Environmental occurrence, importance and speciation[J].Reviews in Environmental Science and Bio-Technology,2009,8(1):29.
14 Huang Yunlong, Zheng Shuilin, Li Yang, et al. Tourmaline proces-sing application status and development prospects[J].China Non-Metallic Mining Industry Herald,2003(4):18(in Chinese).
黄云龙,郑水林,李杨,等.电气石的加工应用现状及发展前景[J].中国非金属矿工业导刊,2003(4):18.
15 Qiu Fagui, Li Quanming, Zhang Mei, et al. New research progress in anion fiber and textile[J].Hi-Tech Fiber & Application,2008(3):19(in Chinese).
邱发贵,李全明,张梅,等.负离子纤维及其纺织品的研究进展[J].高科技纤维与应用,2008(3):19.
16 Li Hecheng. Infrared optical materials-germanium[J].Journal of Lasers & Infrared,1980(7):3(in Chinese).
李贺成.红外光学材料-锗[J].激光与红外,1980(7):3.
17 Kuo C J, Fan C C, Su T L. Nano composite fiber process optimization for polypropylene with antibacterial and far-infrared ray emission properties[J].Textile Research Journal,2016,86(16):1677.
18 Wang Wei. Characteristics of negative air ion concentration and its relationships with environmental factors[J].Ecology and Environment Sciences,2014,23(6):979(in Chinese).
王薇.空气负离子浓度分布特征及其与环境因子的关系[J].生态环境学报,2014,23(6):979.
19 Wang Wei, Yu Zhuang, Ji Fengquan. Evaluation of air cleanness degree of the urban environment based on negative air ion concentration[J].Ecology and Environment Sciences,2013,22(2):298(in Chinese).
王薇,余庄,冀凤全.基于空气负离子浓度的城市环境空气清洁度评价[J].生态环境学报,2013,22(2):298.
20 Huang Fengping, Lei Jian, Li Ying. Study of anion antibacterial nanocomposite ceramics[J].Bulletin of the Chinese Ceramic Society,2006,25(5):147(in Chinese).
黄凤萍,雷建,李缨.负离子抗菌复合陶瓷研究[J].硅酸盐通报,2006,25(5):147.
21 Zhang Shuang, Li Qingshan, Zhang Min, et al. Preparation and performance of the anions releasing antibacterial colorful polyester composite staple fiber[J].Synthetic Fibers,2011(3):21(in Chinese).
张爽,李青山,张敏,等.释放负离子的天然矿石色抗菌复合涤纶短纤维[J].合成纤维,2011(3):21.
22 Zhang Yi, Liu Ye, Zhang Hao, et al. Preparation and properties of amino acid modified chitosan antibacterial material[J].Journal of Functional Materials,2017,48(11):11026(in Chinese).
张毅,刘叶,张昊,等.氨基酸改性壳聚糖抗菌材料制备及其性能研究[J].功能材料,2017,48(11):11026.
23 Mo Zunli, Hu Rere, Wang Yawen, et al. Review of antibacterial materials and their mechanisms[J].Materials Review B: Research,2014,28(1):50(in Chinese).
莫尊理,胡惹惹,王雅雯,等.抗菌材料及其抗菌机理[J].材料导报:研究篇,2014,28(1):50.
[1] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[2] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[3] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[4] 吴鹏飞, 崔华帅, 朱金唐, 史贤宁, 崔宁, 李杰, 黄庆. 暂堵剂用聚乳酸/聚乙醇酸复合纤维的制备及降解性能研究[J]. 材料导报, 2024, 38(13): 22120143-6.
[5] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[6] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[7] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[8] 刘茜, 梁晓正, 杨华明. 黑滑石的矿物学特征及加工与应用研究进展[J]. 材料导报, 2023, 37(21): 22030167-10.
[9] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[10] 程培雪, 马迅, 刘平, 王静静, 马凤仓, 张柯, 陈小红, 刘剑楠, 李伟. 磁控溅射纳米银含量对钛种植体抗菌性的影响[J]. 材料导报, 2023, 37(16): 22030032-6.
[11] 蒋尊宇, 盛扬, 孙一新, 李坚, Mark Bradley, 张嵘. 包载荧光共轭聚合物的阳离子聚合物纳米微球的合成及协同抗菌效果研究[J]. 材料导报, 2023, 37(14): 22010234-9.
[12] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[13] 赵立臣, 张朔, 袁鹏凯, 王新, 戚玉敏, 王铁宝, 崔春翔. 可降解生物医用多孔Zn基支架研究进展[J]. 材料导报, 2023, 37(11): 21090179-8.
[14] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[15] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed