Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22090162-13    https://doi.org/10.11896/cldb.22090162
  无机非金属及其复合材料 |
碳材料用于创伤止血的研究进展
史一涵1, 贺建林2, 丁晟1, 杨焜1, 侯可心1, 李钒1,*
1 中国人民解放军军事科学院卫勤保障技术研究所,天津 300161
2 联勤保障部队第920医院,昆明 650032
Research Progress of Carbon Materials for Wound Hemostasis
SHI Yihan1, HE Jianlin2, DING Sheng1, YANG Kun1, HOU Kexin1, LI Fan1,*
1 Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China
2 No.920 Hospital of Joint Logistics Support Force, Kunming 650032, China
下载:  全 文 ( PDF ) ( 10294KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无法控制的出血是导致战现场伤员死亡的重要原因,因此开发能够快速止血且具有一定急需功能(如抗菌)的材料具有重要意义,可有效保护伤员和降低死亡率。目前常用的有机和无机止血材料均存在一定的不足之处,如环境适应性较差、止血性能不稳定以及潜在的毒副作用等。碳材料一般都具有原料广泛、成本低廉、生物相容性良好、表面易修饰等特点,已经在创伤敷料应用中初步显示出较好的发展前景。本文概括了几种传统和新型的典型碳材料在快速止血和其他创伤救治领域的应用情况,总结了碳材料作为止血剂和创伤敷料等的性能、作用机制及相关制备方法,最后对碳材料用于创伤止血提出了建议和展望。碳材料有望成为战现场和院前急救中一种较为理想的创伤止血敷料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史一涵
贺建林
丁晟
杨焜
侯可心
李钒
关键词:  碳材料  止血  抗菌  创伤敷料    
Abstract: Uncontrollable bleeding is an important cause of death of the wounded at the scene of the war, so it is of great significance to develop materials that can quickly stop bleeding and have certain urgently needed functions (such as antibacterial), which can effectively protect the wounded and reduce mortality. At present, the commonly used organic and inorganic hemostatic materials have certain shortcomings, such as poor environmental adaptability, unstable hemostatic properties and potential toxic and side effects. Carbon materials generally have the characteristics of extensive raw materials, low cost, good biocompatibility and easy surface modification, and have preliminarily shown good development prospects in the application of wound dressings. In this paper, the application of several typical carbon materials including traditional and emerging materials in rapid hemostasis and other wound treatment fields is summarized, and the performance, mechanism of action and related preparation methods of carbon materials as hemostatic agents and wound dressings are summarized. Finally, suggestions and prospects are put forward for the application of carbon materials in wound hemostasis. Carbon materials are expected to be an ideal woundhemostatic dressing in war sites and prehospital care.
Key words:  carbon material    hemostasis    antibacterial    wound dressing
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TB34  
通讯作者:  * 李钒,2016年博士毕业于军事科学院卫勤保障技术研究所,现为中国人民解放军军事科学院卫勤保障技术研究所高级工程师。主要从事止血包扎材料,碳纳米材料在荧光标记、光能转化、光催化等方面的应用基础研究。以第一/通信作者发表学术论文30余 篇,负责国家自然科学基金、天津市自然科学基金以及军队各类项目20余项。vanadium_1981@163.com   
作者简介:  史一涵,2021年毕业于北京化工大学,获得工学学士学位。现为中国人民解放军军事科学院卫勤保障技术研究所硕士研究生,从事生物医用材料方向的研究。
引用本文:    
史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
SHI Yihan, HE Jianlin, DING Sheng, YANG Kun, HOU Kexin, LI Fan. Research Progress of Carbon Materials for Wound Hemostasis. Materials Reports, 2024, 38(9): 22090162-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090162  或          https://www.mater-rep.com/CN/Y2024/V38/I9/22090162
1 Zhao Y, Hao J, Chen Z, et al. Journal of Materials Chemistry B, 2021, 9(27), 5465.
2 Du X, Wu L, Yan H, et al. Nature Communications, 2021, 12(1), 4733.
3 He H, Zhou W, Gao J,et al. Nature Communications, 2022, 13(1), 552.
4 Fang Y, Xu Y, Wang Z, et al. Chemical Engineering Journal, 2020, 388(5), 124169.
5 Hickman D A, Pawlowski C L, Sekhon U D S,et al. Advanced Materials, 2018, 30(4), 1700859.
6 Gao Y, Sarode A, Kokoroskos N,et al. Science Advances, 2020, 6(31), eaba0588.
7 Zheng C, Liu X, Luo X, et al. Journal of Materials Chemistry B, 2019, 7(46), 7338.
8 Gupta M. Journal of Obstetrics and Gynecology of India, 2020, 70(1), 523.
9 Spotnitz W D. World Journal of Surgery, 2010, 34(4), 632.
10 Spotnitz W D. American Surgeon, 2012, 78(12), 1305.
11 Spotnitz W D, Burks S. Transfusion, 2010, 48(7), 1502.
12 Bennett B L, Littlejohn L. Military Medicine, 2014, 179(5), 497.
13 Chen X, Yan Y, Hong L, et al. Biomaterials Science, 2018, 6(12), 3332.
14 Shi P, Zhou D, Zhu Y, et al. ACS Applied Bio Materials, 2021, 4(1), 1030.
15 Dowling M B, Kumar R, Keibler M A,et al. Biomaterials, 2011, 32(13), 3351.
16 Wei S, Chen F, Geng Z, et al. Journal of Materials Chemistry B, 2020, 8(9), 1897.
17 Liang Y, Xu C, Liu F, et al. ACS Applied Materials & Interfaces, 2019, 11(27), 23848.
18 Guan Z, Guan Z, Li Z,et al. Nanoscale Research Letters, 2019, 14(1), 338.
19 Pramanik P, Patel H, Charola S, et al. Journal of CO2 Utilization, 2021, 45, 101450.
20 Rao C, Biswas K, Subrahmanyam K S, et al. Journal of Materials Che-mistry, 2009, 19(17), 2457.
21 Rozhkov A V, Giavaras G, Bliokh Y P, et al. Physics Reports, 2011, 503(2), 77.
22 Liu L L, Zhang H J, Li S, et al. Applied Mechanics & Materials, 2015, 723, 615.
23 Jiao G, He X, Li X, et al. RSC Advances, 2015, 5(66), 53240.
24 Zhao R, Kong W, Sun M, et al. ACS Applied Materials & Interfaces, 2018, 10(21), 17617.
25 Yadav A, Kumar R, Pandey U P, et al. Carbon, 2021, 173, 350.
26 Lee S Y, Moore R B, Mahajan R L. Carbon, 2021, 171(1-1), 585.
27 Wfka B, Esc D, Wmaer B, et al. International Journal of Biological Macromolecules, 2020, 164, 1370.
28 Qian L, Wang H, Yang J, et al. Membranes, 2020, 10(10), 296.
29 Maleki A, Hajizadeh Z, Abbasi H. Carbon Letters, 2018, 27(1), 42.
30 Rajasekaran M, Ayappa K G. Physical Chemistry Chemical Physics, 2020, 22, 16080.
31 Wenjing A, Du F, He Y, et al. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112891.
32 Lee J, Noh S, Pham N D, et al. Electrochimica Acta, 2019, 313, 1.
33 Cheng C, Jia P, Xiao L, et al. Carbon, 2019, 145, 668.
34 Xu S, Zhang L, Wang B, et al. Cell Reports Physical Science, 2021, 2(3), 100372.
35 Zaaba N I, Foo K L, Hashim U, et al. Procedia Engineering, 2017, 184, 469.
36 Robertson J. Materials Today, 2004, 7(10), 46.
37 Kang S, Han H S, Mhin S, et al. Applied Surface Science, 2021, 547(2), 149197.
38 Lu C, Su F. Separation & Purification Technology, 2007, 58(1), 113.
39 Hart A, Owuor P S, Hamel J T, et al. Carbon, 2020, 164(13), 143.
40 Hussein M Z. Polymers, 2021, 13(9), 1362.
41 Lu N, Sui Y, Ding Y, et al. Chemico-Biological Interactions, 2018, 295, 64.
42 Medvecky L, Giretova M, Kralikova R, et al. Journal of Materials Science Materials in Medicine, 2019, 30(5), 54.
43 Yan X, Yang W, Shao Z, et al. Journal of Biomedical Materials Research Part A, 2016, 105(2), 443.
44 Koh L B, Rodriguez I, Venkatraman S S. Acta Biomaterialia, 2009, 5(9), 3411.
45 Kotzabasaki M, Sotiropoulos I, Charitidis C, et al. Nanoscale Advances, 2021, 3, 3167.
46 De Paoli Lacerda S H, Semberova J, Holada K, et al. ACS Nano, 2011, 5(7), 5808.
47 Mostafavi E, Iravani S, Varma R S, et al. Materials Advances, 2022, 3, 4765.
48 Zheng X T, Ananthanarayanan A, Luo K Q, et al. Small, 2015, 11(14), 1620.
49 Ai G, Kang Y F, Yin X B. New Journal of Chemistry, 2017, 41(9), 3422.
50 Qiao Z A, Wang Y, Gao Y, et al. Chemical Communications, 2009, 46(46), 8812.
51 Geng B, Yang D, Pan D, et al. Carbon, 2018, 134, 153.
52 Shakiba-Marani R, Ehtesabi H. International Journal of Biological Macromolecules, 2023, 224, 831.
53 Sun Y, Zhang M, Bhandari B, et al. Food Reviews International, 2022, 38(7), 1513.
54 Travlou N A, Ginnakoudakis D A, Algarra M, et al. Carbon, 2018, 135, 104.
55 Mahat N A, Shamsudin S A, Jullok N, et al. Desalination, 2020, 493, 114618.
56 Yoon C, Yang K P, Kim J, et al. Chemical Engineering Journal, 2019, 382, 122792.
57 Stankovic N, Bodik M, Siffalovic P, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(3), 4154.
58 Zhang Z, Yi G, Li P, et al. Nanoscale, 2020, 12(40), 13899.
59 Liu M L, Chen B B, Li C M, et al. Green Chemistry, 2019, 21(3), 449.
60 Sharma A, Kundu M, Ghosh N, et al. Photodiagnosis and Photodynamic Therapy, 2022, 39, 102861.
61 Xu J, Zhou Y, Liu S, et al. Analytical Methods, 2014, 6(7), 2086.
62 Zhe Z, Hao J, Jing Z, et al. RSC Advances, 2012, 2(23), 8599.
63 Li S, Guo Z, Zhang Y, et al. ACS Applied Materials & Interfaces, 2015, 7(34), 19153.
64 Lu S Y, Jin M, Zhang Y, et al. Advanced Energy Materials, 2018, 8(11), 1702545.
65 Li J, Zhang L, Wang T, et al. Journal of Environmental Sciences, 2021, 99, 119.
66 Kim K, Kim M P, Lee W G. New Journal of Chemistry, 2017, 41(17), 8864.
67 Han F, Zhang M, Liu Z, et al. Chemosphere, 2022, 292, 133507.1.
68 Wong K T, Eu N C, Ibrahim S, et al. Journal of Cleaner Production, 2016, 115, 337.
69 Ogawa M, Bardant T B, Sasaki Y, et al. Bioresources, 2011, 7(1), 236.
70 Hanigan D, Zhang J, Herckes P, et al. Environmental Science & Techno-logy, 2012, 46(22), 12630.
71 Diez N, Diaz P, Alvarez P, et al. Materials Letters, 2014, 136, 214.
72 Fu J, Zhang J, Jin C, et al. Bioresource Technology, 2020, 310(11), 123413.
73 Hassan M F, Sabri M A, Fazal H, et al. Journal of Analytical & Applied Pyrolysis, 2020, 145, 104715.1.
74 Singh S K, Singh M K, Nayak M K, et al. ACS Nano, 2011, 5(6), 4987.
75 Kumari S, Singh M K, Singh S K, et al. Nanomedicine, 2014, 9(3), 427.
76 Siess W. Physiological Reviews, 1989, 69(1), 58.
77 Howe N, Cherpelis B. Journal of the American Academy of Dermatology, 2013, 69(5), 659.e1.
78 Gu R, Sun W, Hong Z, et al. Biomaterials, 2010, 31(6), 1270.
79 Liao K H, Lin Y S, Macosko C W, et al. ACS Applied Materials & Interfaces, 2011, 3(7), 2607.
80 Chen J, Lu L, Ying L, et al. International Journal of Biological Macromolecules, 2019, 130, 827.
81 Duch M C, Budinger G R S, Liang Y T, et al. Nano Letters, 2011, 11(12), 5201.
82 Laura J C, Franklin K, Huang J. Journal of the American Chemical Society, 2009, 132(23), 8180.
83 Fan L, Ge H, Zou S, et al. International Journal of Biological Macromo-lecules, 2016, 93, 582.
84 Quan K, Li G, Tao L, et al. ACS Applied Materials & Interfaces, 2016, 8(12), 7666.
85 Qiu Y, Dong Y, Zhao S, et al. Journal of Applied Polymer Science, 2021, 138(24), 50572.
86 Ruan J, Wang X, Yu Z, et al. Advanced Functional Materials, 2016, 26(7), 1085.
87 Zhang Y, Guan J, Wu J, et al. Carbohydrate Polymers, 2019, 219, 405.
88 Zhang M, Wang D, Ji N, et al. Polymers, 2021, 13(16), 2812.
89 Li G, Liang Y, Xu C, et al. Colloids and Surfaces B: Biointerfaces, 2018, 174, 35.
90 Lee D Y, Khatun Z, Lee J H, et al. Biomacromolecules, 2011, 12(2), 336.
91 Chen J, Lu L, Ying L, et al. International Journal of Biological Macromolecules, 2019, 130, 827.
92 Gaffney A M, Santos-Martinez M J, Satti A, et al. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11(1), 39.
93 Teixeira-Santos R, Gomes M, Gomes L C, et al. iScience, 2020, 24(1), 102001.
94 Fent J, Bihari P, Vippola M, et al. Toxicology in Vitro, 2015, 29(5), 1132.
95 Ishii H, Endo H, Tsuchiya H, et al. General Thoracic and Cardiovascular Surgery, 2018, 66(12), 753.
96 Macdonald M H, Tasse L, Wang D, et al. Journal of Investigative Surgery, 2020, 34(3), 1.
97 Hutchinson R W, George K, Johns D, et al. Cellulose, 2013, 20(1), 537.
98 Cheng W, Li H, Zheng X, et al. Physical Chemistry Chemical Physics, 2016, 18(42), 29183.
22090162-1299 Chakoli A N, He J, Cheng W, et al. RSC Advances, 2014, 4(94), 52372.
100 Zhang B. Journal of Nanoscience and Nanotechnology, 2018, 19(11), 7410.
101 Zhang W, Zhao L, Gao C, et al. Journal of Materials Chemistry B, 2021, 9(47), 9754.
102 Luyts K, Smulders S, Napierska D, et al. Particle & Fibre Toxicology, 2014, 11(1), 61.
103 Picheth G F, Pirich C L, Sierakowski M R, et al. International Journal of Biological Macromolecules, 2017, 104, 97.
104 Khalid A, Madni A, Raza B, et al. International Journal of Biological Macromolecules, 2022, 203, 256.
105 Li S.Preparation of fluorescent carbon dots and study on their blood compatibility. Master's Thesis, Jinan University, China, 2016(in Chinese).
李莎. 荧光碳点的制备及其血液相容性研究. 硕士学位论文, 暨南大学, 2016.
106 Luo J, Zhang M, Cheng J, et al. RSC Advances, 2018, 8(66), 37707.
107 Tian R, Guo Y, Luo F, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 438, 114531.
108 Rezaei A, Ehtesabi H. Matreials Today Chemistry, 2022, 24, 100910.
109 Yan X, Zhao Y, Luo J, et al. Journal of Nanobiotechnology, 2017, 15(1), 60.
110 Jian H J, Wu R S, Lin T Y, et al. ACS Nano, 2017, 11(7), 6703.
111 Li Y, Ma W, Sun J, et al. Carbon, 2019, 159, 149.
112 Roxana J, Alexandre B, Julie B, et al. Colloids & Surfaces B Biointerfa-ces, 2018, 170, 347.
113 Zhao C, Wu L, Wang X, et al. Carbon, 2020, 163(14), 70.
114 Bankoti K, Rameshbabu A P, Datta S, et al. Journal of Materials Che-mistry B, 2017, 5(32), 6579.
115 Yang J, Gao G, Zhang X, et al. Carbon, 2019, 146, 827.
116 Li P, Liu S, Yang X, et al. Chemical Engineering Journal, 2020, 403, 126387.
117 Liu Y, Xu B, Lu M, et al. Bioactive Materials, 2021, 12, 246.
118 Kasouni A I, Chatzimitakos T G, Troganis A N, et al. Materials Today Communications, 2021, 26, 102019.
119 Kim M H, Cho D, Kwon O H, et al. Journal of Alloys and Compounds, 2017, 735, 2670.
120 Chakravarthi A, Srinivas C R, Mathew A C. Indian Journal of Dermato-logy Venereology & Leprology, 2008, 74(2), 122.
121 Du X N, Niu Z, Zhou G Z, et al. Biomaterials Artificial Cells & Artificial Organs, 1987, 15(1), 229.
122 Yushin G, Hoffman E N, Barsoum M W, et al. Biomaterials, 2006, 27(34), 5755.
123 Israel O. African Journal of Pure & Applied Chemistry, 2009, 3(1), 6.
124 Kaviyashri Y, Mari S S, Arunachalam T, et al. Materials Today: Proceedings, 2021, 47(4), 321.
125 Huang W Y, Yeh C L, Lin J H, et al. Journal of Materials Science Materials in Medicine, 2012, 23(6), 1465.
126 Lin Y H, Lin J H, Wang S H, et al. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100(8), 2288.
127 Lin Y H, Hsu W S, Chung W Y, et al. Journal of Materials Science Materials in Medicine, 2014, 25(5), 1375.
128 Yang X, Liu W, Li N, et al. Biomaterials Science, 2017, 5(12), 2357.
129 Dai M, Li M, Gong J, et al. Materials & Design, 2022, 216, 110577.
130 Anselmo A C, Modery-Pawlowski C L, Menegatti S, et al. ACS Nano, 2014, 8(11), 11243.
131 Hong C, Alser O, Gebran A, et al. ACS Nano, 2022, 16(2), 2494.
132 Xi G, Liu W, Chen M, et al. ACS Applied Materials & Interfaces, 2019, 11(50), 46558.
133 Modery-Pawlowski C L, Tian L L, Pan V, et al. Biomaterials, 2013, 34(2), 526.
134 Toy R, Hayden E, Shoup C, et al. Nanotechnology, 2011, 22(11), 115101.
135 Pillai J D, Dunn S S, Napier M E, et al. Iubmb Life, 2011, 63(8), 596.
136 He Y, Xu J, Sun X, et al. Theranostics, 2019, 9(9), 2489.
137 Kumar P, Lakshmanan V K, Biswas R, et al. Journal of Biomedical Nanotechnology, 2012, 8(6), 891.
138 Hao S, Nor Y A, Yu M, et al. Journal of the American Chemical Society, 2016, 138(20), 6455.
139 Yue Q, Zhang Y, Jiang Y, et al. Journal of the American Chemical So-ciety, 2017, 139(13), 4954.
[1] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[2] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[3] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[4] 周美玲, 杜姗, 欧康康, 代云玲, 齐琨, 王华平. 纳米纤维基智能创伤敷料的研究进展[J]. 材料导报, 2024, 38(20): 23060224-11.
[5] 谢发之, 张梦, 张道德, 杨少华, 宋恒帅, 马钰佳, 方亮, 邵永刚. N、P/RC@Pb复合材料在铅碳电池负极中的应用[J]. 材料导报, 2024, 38(19): 23030049-9.
[6] 李鹏程, 魏嘉佳, 孟昊天, 王文轩, 李佳峻, 李达, 涂秋芬. 静电自组装法构建抗菌抗凝涂层的研究[J]. 材料导报, 2024, 38(14): 23020101-9.
[7] 李亮, 刘淑萍, 裴斐斐, 杨雷锋, 刘让同. 载中药聚乳酸多孔纳米纤维医用敷料[J]. 材料导报, 2024, 38(10): 22080169-7.
[8] 黄怡萱, 于鹏, 周正难, 王珍高, 宁成云. 导电聚合物基抗菌复合材料的合成及生物医用研究进展[J]. 材料导报, 2023, 37(9): 21090198-9.
[9] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[10] 闫星雨, 但年华, 陈一宁, 但卫华, 李正军. 胶原基复合止血材料的研究进展及展望[J]. 材料导报, 2023, 37(5): 21030008-9.
[11] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[12] 谢发之, 宋恒帅, 张道德, 杨少华, 张梦, 方亮, 邵永刚. 铅炭电池负极添加剂研究进展[J]. 材料导报, 2023, 37(22): 22030203-8.
[13] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J]. 材料导报, 2023, 37(21): 22030088-16.
[14] 刘茜, 梁晓正, 杨华明. 黑滑石的矿物学特征及加工与应用研究进展[J]. 材料导报, 2023, 37(21): 22030167-10.
[15] 滕桂香, 杨怡凡, 侯苏童, 姚慧, 张春. 一步法制备PLA/PDA/Ag多孔抗菌纳米纤维膜及其
促进伤口愈合作用研究
[J]. 材料导报, 2023, 37(18): 23080053-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed