Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22070258-9    https://doi.org/10.11896/cldb.22070258
  高分子与聚合物基复合材料 |
基于碳材料的多维度柔性应变/压力传感器的研究进展
刘玉慧1,2, 柳仕林1,2, 吴聪影1,2, 吴琪琳1,2,*
1 东华大学纤维材料改性国家重点实验室,上海 201620
2 东华大学材料科学与工程学院,上海 201620
Research Progress of Multi-dimensional Flexible Strain/Pressure Sensors Based on Carbon Materials
LIU Yuhui1,2, LIU Shilin1,2, WU Congying1,2, WU Qilin1,2,*
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
2 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 18704KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,基于碳材料的柔性应变/压力传感器发展迅速,在临床疾病诊断、健康监测、电子皮肤和软机器人等智能可穿戴领域内具有广阔的应用前景。本文综述了基于碳纳米材料和生物衍生碳材料的柔性应变/压力传感器的制备方法和性能特征。根据碳材料的维度和结构特点,可将传感器划分为三大类型:一维纤维/纱线型、二维薄膜/织物型和三维多孔/网络型。本文还重点评述了不同维度碳基柔性传感器的研究进展和存在的问题。未来柔性传感器的发展重点将聚焦于新型结构设计、综合性能提升和多模式功能化应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘玉慧
柳仕林
吴聪影
吴琪琳
关键词:  碳材料  柔性传感器  多维度  多功能    
Abstract: In recent years, flexible strain/pressure sensors based on carbon materials have been developed rapidly and found to have great application potential in smart wearable fields such as clinical disease diagnosis, health monitoring, electronic skin and soft robots. In the present paper, the preparation methods and performance characteristics of flexible strain/pressure sensors, based on the use of carbon nanomaterials and biologically derived carbon materials, are reviewed. The summary is carried out from the perspectives of the three types of sensors, i.e. 1D fiber/yarn type, 2D film/fabric type and 3D porous/network type, which are categorized according to the dimension and structural characteristics of carbon materials. In addition, the research progress and existing problems of carbon-based flexible sensors in different dimensions are critically discussed. And we suggest that the future development directions should be focused on new structural design, comprehensive performance improvement and multi-mode functional applications.
Key words:  carbon material    flexible sensor    multi-dimensional    multifunction
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TB33  
基金资助: 国家自然科学基金重大项目(52090033;52090030)
通讯作者:  *吴琪琳,东华大学材料科学与工程学院教授、博士研究生导师,UC Davis分校访问学者。2008年于东华大学获得材料学博士学位。主要研究方向为高性能纤维及其复合材料。编著教材6部,在国外权威期刊和国内核心期刊共发表论文100余篇,其中SCI/EI收录50篇,曾获“国家科技进步二等奖”(2003)等奖项。wql@dhu.edu.cn   
作者简介:  刘玉慧,东华大学材料科学与工程学院2020级硕士研究生,在吴琪琳教授的指导下进行研究。目前研究方向为碳基柔性传感器。
引用本文:    
刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
LIU Yuhui, LIU Shilin, WU Congying, WU Qilin. Research Progress of Multi-dimensional Flexible Strain/Pressure Sensors Based on Carbon Materials. Materials Reports, 2024, 38(4): 22070258-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070258  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22070258
1 Kim J, Campbell A S, De Avila B E F, et al. Nature Biotechnology, 2019, 37(4), 389.
2 Al-Makhadmeh Z, Tolba A. Measurement, 2019, 147, 106815.
3 Hrovat M, Belavić D, Samardžija Z. Journal of the European Ceramic Society, 2001, 21(10), 2001.
4 Singh P, Miao J, Park W T, et al. Journal of Micromechanics and Mic-roengineering, 2011, 21(10), 105007.
5 Tran Q T, Lee N E. Advanced Materials, 2016, 28(22), 4338.
6 Wang X, Liu Z, Zhang T. Small, 2017, 13(25), 1602790.
7 Li S, Xiao X, Hu J, et al. ACS Applied Electronic Materials, 2020, 2(8), 2282.
8 Chortos A, Liu J, Bao Z. Nature Materials, 2016, 15(9), 937.
9 Ho M D, Ling Y, Yap L W, et al. Advanced Functional Materials, 2017, 27(25), 1700845.
10 Pan J, Yang M, Luo L, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7338.
11 Niu D, Jiang W, Ye G, et al. Materials Research Bulletin, 2018, 102, 92.
12 Li Q, Li J, Tran D, et al. Journal of Materials Chemistry C, 2017, 5(42), 11092.
13 Shintake J, Piskarev E, Jeong S H, et al. Advanced Materials Technologies, 2018, 3(3), 1700284.
14 Zhang M, Wang C, Wang H, et al. Advanced Functional Materials, 2017, 27(2), 1604795.
15 Liang J J, Zhao Z B, Tang Y C, et al. New Carbon Materials, 2020, 35(5), 522(in Chinese).
梁菁菁, 赵宗彬, 唐永超, 等. 新型炭材料, 2020, 35(5), 522.
16 Lu Y L, Mu X W, Huang L S, et al. Materials Reports, 2022, 36(6), 20070278(in Chinese).
鲁猷栾, 穆新伟, 黄乐舒, 等. 材料导报, 2022, 36(6), 20070278.
17 Chang S N, Li J, Liu H. Materials Reports, 2020, 34(19), 19173(in Chinese).
常胜男, 李津, 刘皓. 材料导报, 2020, 34(19), 19173.
18 Bae G Y, Pak S W, Kim D, et al. Advanced Materials, 2016, 28(26), 5300.
19 Zhao J, Wang G, Yang R, et al. ACS Nano, 2015, 9(2), 1622.
20 Zeng Y, Qin Y, Yang Y, et al. IEEE Sensors Journal, 2022, 22(8), 7665.
21 Baek S, Jang H, Kim S Y, et al. RSC Advances, 2017, 7(63), 39420.
22 Lü C, Wu S, Lu B, et al. Journal of Micromechanics and Microenginee-ring, 2018, 28(2), 025010.
23 Li S, He Y, Ye X, et al. Carbohydrate Polymers, 2022, 298, 120099.
24 Sohn K S, Timilsina S, Singh S P, et al. APL Materials, 2016, 4(10), 106102.
25 Ding X, Cao H, Zhang X, et al. Sensors, 2018, 18(6), 1713.
26 Wang X, Li J, Song H, et al. ACS Applied Materials & Interfaces, 2018, 10(8), 7371.
27 Paul S J, Elizabeth I, Gupta B K. ACS Applied Materials & Interfaces, 2021, 13(7), 8871.
28 Zhou J, Yu H, Xu X, et al. ACS Applied Materials & Interfaces, 2017, 9(5), 4835.
29 Cai Y, Shen J, Ge G, et al. ACS Nano, 2018, 12(1), 56.
30 Wang Z, Huang Y, Sun J, et al. ACS Applied Materials & Interfaces, 2016, 8(37), 24837.
31 Wang C, Li X, Gao E, et al. Advanced Materials, 2016, 28(31), 6640.
32 An B W, Shin J H, Kim S Y, et al. Polymers, 2017, 9(8), 303.
33 Ren M, Zhou Y, Wang Y, et al. Chemical Engineering Journal, 2019, 360, 762.
34 Souri H, Banerjee H, Jusufi A, et al. Advanced Intelligent Systems, 2020, 2(8), 2000039.
35 Pan J, Hao B, Song W, et al. Composites Part B: Engineering, 2020, 183, 107683.
36 Wang X, Sun H, Yue X, et al. Composites Science and Technology, 2018, 168, 126.
37 Sun Y, Zhang Z, Zhou Y, et al. Advanced Materials Technologies, 2021, 6(5), 2001071.
38 Wang C, Xia K, Jian M, et al. Journal of Materials Chemistry C, 2017, 5(30), 7604.
39 Lee J, Pyo S, Kwon D S, et al. Small, 2019, 15(12), 1805120.
40 Iglio R, Mariani S, Robbiano V, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 13877.
41 Liu C, Zhu W, Li M, et al. Organic Electronics, 2020, 76, 105447.
42 He Y, Wu D, Zhou M, et al. ACS Applied Materials & Interfaces, 2021, 13(13), 15572.
43 Cao X, Zhang J, Chen S, et al. Advanced Functional Materials, 2020, 30(35), 2003618.
44 Cai G, Yang M, Pan J, et al. ACS Applied Materials & Interfaces, 2018, 10(38), 32726.
45 Cheng Y, Wang R, Sun J, et al. Advanced Materials, 2015, 27(45), 7365.
46 Lee T, Lee W, Kim S W, et al. Advanced Functional Materials, 2016, 26(34), 6206.
47 Zhang M, Wang C, Wang Q, et al. ACS Applied Materials & Interfaces, 2016, 8(32), 20894.
48 Wu X, Han Y, Zhang X, et al. ACS Applied Materials & Interfaces, 2016, 8(15), 9936.
49 Li W, Zhou Y, Wang Y, et al. Advanced Electronic Materials, 2020, 7(1), 2000865.
50 Liu X, Liu D, Lee J H, et al. ACS Applied Materials & Interfaces, 2019, 11(2), 2282.
51 Shu J, Yang R, Chang Y, et al. Journal of Alloys and Compounds, 2021, 879, 160466.
52 Qiao Y, Wang Y, Tian H, et al. ACS Nano, 2018, 12(9), 8839.
53 Guo Z, Mo L, Ding Y, et al. Micromachines, 2019, 10(11), 715.
54 Li Y, He T, Shi L, et al. ACS Applied Materials & Interfaces, 2020, 12(15), 17691.
55 Yang R, Chang Y, Yang X, et al. Composites Part B:Engineering, 2021, 217, 108818.
56 Zheng Y, Li Y, Zhou Y, et al. ACS Applied Materials & Interfaces, 2020, 12(1), 1474.
57 Zhao S Q, Zheng P X, Cong H L, et al. Applied Surface Science, 2021, 558, 149931.
58 Wang Q, Jian M, Wang C, et al. Advanced Functional Materials, 2017, 27(9), 1605657.
59 Zhang Y Q. Biotechnology Advances, 2002, 20(2), 91.
60 Xu L P. Preparation and research of silk fabric based flexible strain sensors. Master’s Thesis, Donghua University, China, 2020(in Chinese).
徐乐平. 蚕丝织物基柔性应变传感器的制备与研究. 硕士学位论文, 东华大学, 2020.
61 Zhang L, Li B, Gao Y, et al. Materials Reports, 2022, 36 (19), 1(in Chinese).
张蕾, 李博, 高阳, 等. 材料导报, 2022, 36(19), 1.
62 Deng Z, Tang P, Wu X, et al. ACS Applied Materials & Interfaces, 2021, 13(17), 20539.
63 Yang J C, Kim J O, Oh J, et al. ACS Applied Materials & Interfaces, 2019, 11(21), 19472.
64 Samad Y A, Li Y, Alhassan S M, et al. ACS Applied Materials & Interfaces, 2015, 7(17), 9195.
65 Li J, Zhao S, Zeng X, et al. ACS Applied Materials & Interfaces, 2016, 8(29), 18954.
66 Xia Q, Wang S, Zhai W, et al. Composites Communications, 2021, 26, 100809.
67 Li Y, Jiang C, Han W. Nanoscale, 2020, 12(3), 2081.
68 Li Y Q, Zhu W B, Yu X G, et al. ACS Applied Materials & Interfaces, 2016, 8(48), 33189.
69 Chen C, Song J, Zhu S, et al. Chemistry, 2018, 4(3), 544.
70 Li G, Chu Z, Gong X, et al. Advanced Materials Technologies, 2022, 7(5), 2101021.
71 Zhai J, Zhang Y, Cui C, et al. ACS Sustainable Chemistry & Enginee-ring, 2021, 9(42), 14029.
72 Tian M. Preparation and properties of highly elastic conductive carbon sponge. Master’s Thesis, Xi’an University of Technology, China, 2021(in Chinese).
田梦. 高弹性导电碳海绵的制备及性能研究. 硕士学位论文, 西安理工大学, 2021.
73 Ding Y, Xu T, Onyilagha O, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 6685.
74 He L, Wu Y J, Shi R, et al. Modern Chemical Industry, 2021, 41(12), 32(in Chinese).
何龙, 伍亚军, 石锐, 等. 现代化工, 2021, 41(12), 32.
75 Niu H, Gao S, Yue W, et al. Small, 2020, 16(4), 1904774.
76 Yang S, Zhang C, Ji J, et al. Advanced Materials Technologies, 2022, 7(11), 2200309.
77 Zhang X, Hu Y, Gu H, et al. Advanced Materials Technologies, 2019, 4(9), 1900367.
78 Jian M, Xia K, Wang Q, et al. Advanced Functional Materials, 2017, 27(9), 1606066.
79 Song S, Zhang C, Li W, et al. Nano Energy, 2022, 100, 107513.
80 Li W, Jin X, Han X, et al. ACS Applied Materials & Interfaces, 2021, 13(16), 19211.
81 Bauer J, Schroer A, Schwaiger R, et al. Nature Materials, 2016, 15(4), 443.
82 Li C, Ding Y W, Hu B C, et al. Advanced Materials, 2020, 32(2), 1904331.
83 Yu Z L, Qin B, Ma Z Y, et al. Advanced Materials, 2019, 31(23), 1900651.
84 Yang M, Zhao N, Cui Y, et al. ACS Nano, 2017, 11(7), 6817.
85 Peng M, Wen Z, Xie L, et al. Advanced Materials, 2019, 31(35), 1902930.
86 Dai X, Huang L B, Du Y, et al. Composites Communications, 2021, 24, 100654.
87 Chou H H, Nguyen A, Chortos A, et al. Nature Communications, 2015, 6, 8011.
88 Yang Y, Wang H, Zhang S, et al. Matter, 2021, 4(10), 3354.
89 Liu X, Li Y, Sun X, et al. Matter, 2021, 4(5), 1735.
90 Gao H L, Wang Z Y, Cui C, et al. Advanced Materials, 2021, 33(39), 2102724.
[1] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[2] 史一涵, 贺建林, 丁晟, 杨焜, 侯可心, 李钒. 碳材料用于创伤止血的研究进展[J]. 材料导报, 2024, 38(9): 22090162-13.
[3] 陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
[4] 谢发之, 张梦, 张道德, 杨少华, 宋恒帅, 马钰佳, 方亮, 邵永刚. N、P/RC@Pb复合材料在铅碳电池负极中的应用[J]. 材料导报, 2024, 38(19): 23030049-9.
[5] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[6] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[7] 谢发之, 宋恒帅, 张道德, 杨少华, 张梦, 方亮, 邵永刚. 铅炭电池负极添加剂研究进展[J]. 材料导报, 2023, 37(22): 22030203-8.
[8] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J]. 材料导报, 2023, 37(21): 22030088-16.
[9] 陈昊翔, 李伟华. 自感知发光涂层在腐蚀监测中的研究进展[J]. 材料导报, 2023, 37(2): 21050151-10.
[10] 师甜甜, 杜立飞, 张海锋, 田闰博. 水基吸波超材料的研究进展[J]. 材料导报, 2023, 37(18): 21120076-7.
[11] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
[12] 李心, 郭琳, 黄金的, 王丽, 谢海泉, 叶立群. 碳材料/甲壳素复合水凝胶高效太阳能海水淡化[J]. 材料导报, 2022, 36(12): 21030098-6.
[13] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[14] 方全海, 吴良沛, 董建峰. 多功能超表面的光传输特性研究进展[J]. 材料导报, 2020, 34(9): 9048-9054.
[15] 岳先会,金鑫,谷成. 碳材料促进硝基/卤素取代类有机污染物还原降解的研究进展[J]. 材料导报, 2020, 34(3): 3028-3036.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed