Research Progress of Multi-dimensional Flexible Strain/Pressure Sensors Based on Carbon Materials
LIU Yuhui1,2, LIU Shilin1,2, WU Congying1,2, WU Qilin1,2,*
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China 2 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
Abstract: In recent years, flexible strain/pressure sensors based on carbon materials have been developed rapidly and found to have great application potential in smart wearable fields such as clinical disease diagnosis, health monitoring, electronic skin and soft robots. In the present paper, the preparation methods and performance characteristics of flexible strain/pressure sensors, based on the use of carbon nanomaterials and biologically derived carbon materials, are reviewed. The summary is carried out from the perspectives of the three types of sensors, i.e. 1D fiber/yarn type, 2D film/fabric type and 3D porous/network type, which are categorized according to the dimension and structural characteristics of carbon materials. In addition, the research progress and existing problems of carbon-based flexible sensors in different dimensions are critically discussed. And we suggest that the future development directions should be focused on new structural design, comprehensive performance improvement and multi-mode functional applications.
1 Kim J, Campbell A S, De Avila B E F, et al. Nature Biotechnology, 2019, 37(4), 389. 2 Al-Makhadmeh Z, Tolba A. Measurement, 2019, 147, 106815. 3 Hrovat M, Belavić D, Samardija Z. Journal of the European Ceramic Society, 2001, 21(10), 2001. 4 Singh P, Miao J, Park W T, et al. Journal of Micromechanics and Mic-roengineering, 2011, 21(10), 105007. 5 Tran Q T, Lee N E. Advanced Materials, 2016, 28(22), 4338. 6 Wang X, Liu Z, Zhang T. Small, 2017, 13(25), 1602790. 7 Li S, Xiao X, Hu J, et al. ACS Applied Electronic Materials, 2020, 2(8), 2282. 8 Chortos A, Liu J, Bao Z. Nature Materials, 2016, 15(9), 937. 9 Ho M D, Ling Y, Yap L W, et al. Advanced Functional Materials, 2017, 27(25), 1700845. 10 Pan J, Yang M, Luo L, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 7338. 11 Niu D, Jiang W, Ye G, et al. Materials Research Bulletin, 2018, 102, 92. 12 Li Q, Li J, Tran D, et al. Journal of Materials Chemistry C, 2017, 5(42), 11092. 13 Shintake J, Piskarev E, Jeong S H, et al. Advanced Materials Technologies, 2018, 3(3), 1700284. 14 Zhang M, Wang C, Wang H, et al. Advanced Functional Materials, 2017, 27(2), 1604795. 15 Liang J J, Zhao Z B, Tang Y C, et al. New Carbon Materials, 2020, 35(5), 522(in Chinese). 梁菁菁, 赵宗彬, 唐永超, 等. 新型炭材料, 2020, 35(5), 522. 16 Lu Y L, Mu X W, Huang L S, et al. Materials Reports, 2022, 36(6), 20070278(in Chinese). 鲁猷栾, 穆新伟, 黄乐舒, 等. 材料导报, 2022, 36(6), 20070278. 17 Chang S N, Li J, Liu H. Materials Reports, 2020, 34(19), 19173(in Chinese). 常胜男, 李津, 刘皓. 材料导报, 2020, 34(19), 19173. 18 Bae G Y, Pak S W, Kim D, et al. Advanced Materials, 2016, 28(26), 5300. 19 Zhao J, Wang G, Yang R, et al. ACS Nano, 2015, 9(2), 1622. 20 Zeng Y, Qin Y, Yang Y, et al. IEEE Sensors Journal, 2022, 22(8), 7665. 21 Baek S, Jang H, Kim S Y, et al. RSC Advances, 2017, 7(63), 39420. 22 Lü C, Wu S, Lu B, et al. Journal of Micromechanics and Microenginee-ring, 2018, 28(2), 025010. 23 Li S, He Y, Ye X, et al. Carbohydrate Polymers, 2022, 298, 120099. 24 Sohn K S, Timilsina S, Singh S P, et al. APL Materials, 2016, 4(10), 106102. 25 Ding X, Cao H, Zhang X, et al. Sensors, 2018, 18(6), 1713. 26 Wang X, Li J, Song H, et al. ACS Applied Materials & Interfaces, 2018, 10(8), 7371. 27 Paul S J, Elizabeth I, Gupta B K. ACS Applied Materials & Interfaces, 2021, 13(7), 8871. 28 Zhou J, Yu H, Xu X, et al. ACS Applied Materials & Interfaces, 2017, 9(5), 4835. 29 Cai Y, Shen J, Ge G, et al. ACS Nano, 2018, 12(1), 56. 30 Wang Z, Huang Y, Sun J, et al. ACS Applied Materials & Interfaces, 2016, 8(37), 24837. 31 Wang C, Li X, Gao E, et al. Advanced Materials, 2016, 28(31), 6640. 32 An B W, Shin J H, Kim S Y, et al. Polymers, 2017, 9(8), 303. 33 Ren M, Zhou Y, Wang Y, et al. Chemical Engineering Journal, 2019, 360, 762. 34 Souri H, Banerjee H, Jusufi A, et al. Advanced Intelligent Systems, 2020, 2(8), 2000039. 35 Pan J, Hao B, Song W, et al. Composites Part B: Engineering, 2020, 183, 107683. 36 Wang X, Sun H, Yue X, et al. Composites Science and Technology, 2018, 168, 126. 37 Sun Y, Zhang Z, Zhou Y, et al. Advanced Materials Technologies, 2021, 6(5), 2001071. 38 Wang C, Xia K, Jian M, et al. Journal of Materials Chemistry C, 2017, 5(30), 7604. 39 Lee J, Pyo S, Kwon D S, et al. Small, 2019, 15(12), 1805120. 40 Iglio R, Mariani S, Robbiano V, et al. ACS Applied Materials & Interfaces, 2018, 10(16), 13877. 41 Liu C, Zhu W, Li M, et al. Organic Electronics, 2020, 76, 105447. 42 He Y, Wu D, Zhou M, et al. ACS Applied Materials & Interfaces, 2021, 13(13), 15572. 43 Cao X, Zhang J, Chen S, et al. Advanced Functional Materials, 2020, 30(35), 2003618. 44 Cai G, Yang M, Pan J, et al. ACS Applied Materials & Interfaces, 2018, 10(38), 32726. 45 Cheng Y, Wang R, Sun J, et al. Advanced Materials, 2015, 27(45), 7365. 46 Lee T, Lee W, Kim S W, et al. Advanced Functional Materials, 2016, 26(34), 6206. 47 Zhang M, Wang C, Wang Q, et al. ACS Applied Materials & Interfaces, 2016, 8(32), 20894. 48 Wu X, Han Y, Zhang X, et al. ACS Applied Materials & Interfaces, 2016, 8(15), 9936. 49 Li W, Zhou Y, Wang Y, et al. Advanced Electronic Materials, 2020, 7(1), 2000865. 50 Liu X, Liu D, Lee J H, et al. ACS Applied Materials & Interfaces, 2019, 11(2), 2282. 51 Shu J, Yang R, Chang Y, et al. Journal of Alloys and Compounds, 2021, 879, 160466. 52 Qiao Y, Wang Y, Tian H, et al. ACS Nano, 2018, 12(9), 8839. 53 Guo Z, Mo L, Ding Y, et al. Micromachines, 2019, 10(11), 715. 54 Li Y, He T, Shi L, et al. ACS Applied Materials & Interfaces, 2020, 12(15), 17691. 55 Yang R, Chang Y, Yang X, et al. Composites Part B:Engineering, 2021, 217, 108818. 56 Zheng Y, Li Y, Zhou Y, et al. ACS Applied Materials & Interfaces, 2020, 12(1), 1474. 57 Zhao S Q, Zheng P X, Cong H L, et al. Applied Surface Science, 2021, 558, 149931. 58 Wang Q, Jian M, Wang C, et al. Advanced Functional Materials, 2017, 27(9), 1605657. 59 Zhang Y Q. Biotechnology Advances, 2002, 20(2), 91. 60 Xu L P. Preparation and research of silk fabric based flexible strain sensors. Master’s Thesis, Donghua University, China, 2020(in Chinese). 徐乐平. 蚕丝织物基柔性应变传感器的制备与研究. 硕士学位论文, 东华大学, 2020. 61 Zhang L, Li B, Gao Y, et al. Materials Reports, 2022, 36 (19), 1(in Chinese). 张蕾, 李博, 高阳, 等. 材料导报, 2022, 36(19), 1. 62 Deng Z, Tang P, Wu X, et al. ACS Applied Materials & Interfaces, 2021, 13(17), 20539. 63 Yang J C, Kim J O, Oh J, et al. ACS Applied Materials & Interfaces, 2019, 11(21), 19472. 64 Samad Y A, Li Y, Alhassan S M, et al. ACS Applied Materials & Interfaces, 2015, 7(17), 9195. 65 Li J, Zhao S, Zeng X, et al. ACS Applied Materials & Interfaces, 2016, 8(29), 18954. 66 Xia Q, Wang S, Zhai W, et al. Composites Communications, 2021, 26, 100809. 67 Li Y, Jiang C, Han W. Nanoscale, 2020, 12(3), 2081. 68 Li Y Q, Zhu W B, Yu X G, et al. ACS Applied Materials & Interfaces, 2016, 8(48), 33189. 69 Chen C, Song J, Zhu S, et al. Chemistry, 2018, 4(3), 544. 70 Li G, Chu Z, Gong X, et al. Advanced Materials Technologies, 2022, 7(5), 2101021. 71 Zhai J, Zhang Y, Cui C, et al. ACS Sustainable Chemistry & Enginee-ring, 2021, 9(42), 14029. 72 Tian M. Preparation and properties of highly elastic conductive carbon sponge. Master’s Thesis, Xi’an University of Technology, China, 2021(in Chinese). 田梦. 高弹性导电碳海绵的制备及性能研究. 硕士学位论文, 西安理工大学, 2021. 73 Ding Y, Xu T, Onyilagha O, et al. ACS Applied Materials & Interfaces, 2019, 11(7), 6685. 74 He L, Wu Y J, Shi R, et al. Modern Chemical Industry, 2021, 41(12), 32(in Chinese). 何龙, 伍亚军, 石锐, 等. 现代化工, 2021, 41(12), 32. 75 Niu H, Gao S, Yue W, et al. Small, 2020, 16(4), 1904774. 76 Yang S, Zhang C, Ji J, et al. Advanced Materials Technologies, 2022, 7(11), 2200309. 77 Zhang X, Hu Y, Gu H, et al. Advanced Materials Technologies, 2019, 4(9), 1900367. 78 Jian M, Xia K, Wang Q, et al. Advanced Functional Materials, 2017, 27(9), 1606066. 79 Song S, Zhang C, Li W, et al. Nano Energy, 2022, 100, 107513. 80 Li W, Jin X, Han X, et al. ACS Applied Materials & Interfaces, 2021, 13(16), 19211. 81 Bauer J, Schroer A, Schwaiger R, et al. Nature Materials, 2016, 15(4), 443. 82 Li C, Ding Y W, Hu B C, et al. Advanced Materials, 2020, 32(2), 1904331. 83 Yu Z L, Qin B, Ma Z Y, et al. Advanced Materials, 2019, 31(23), 1900651. 84 Yang M, Zhao N, Cui Y, et al. ACS Nano, 2017, 11(7), 6817. 85 Peng M, Wen Z, Xie L, et al. Advanced Materials, 2019, 31(35), 1902930. 86 Dai X, Huang L B, Du Y, et al. Composites Communications, 2021, 24, 100654. 87 Chou H H, Nguyen A, Chortos A, et al. Nature Communications, 2015, 6, 8011. 88 Yang Y, Wang H, Zhang S, et al. Matter, 2021, 4(10), 3354. 89 Liu X, Li Y, Sun X, et al. Matter, 2021, 4(5), 1735. 90 Gao H L, Wang Z Y, Cui C, et al. Advanced Materials, 2021, 33(39), 2102724.