Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22090175-7    https://doi.org/10.11896/cldb.22090175
  金属与金属基复合材料 |
电弧增材制造传热传质数值模拟技术综述
郭鑫鑫1, 魏正英1,*, 张永恒1, 张帅锋1,2
1 西安交通大学精密微纳制造技术全国重点实验室,西安 710049
2 中国船舶集团有限公司第七二五研究所,河南 洛阳 471039
An Overview of Numerical Simulation of Heat and Mass Transfer in Wire Arc Additive Manufacturing
GUO Xinxin1, WEI Zhengying1,*, ZHANG Yongheng1, ZHANG Shuaifeng1,2
1 State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2 Luoyang Ship Material Research Institute, Luoyang 471039, Henan, China
下载:  全 文 ( PDF ) ( 5833KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电弧增材制造过程涉及丝材的送入和熔化,熔融金属向熔池的过渡,熔池中液态金属的对流、凝固和成形。缺陷的形成与电弧增材制造过程中发生的复杂多物理场现象密切相关。因此,需要借助高保真数值模拟技术来深入理解这些物理现象,并将其作为优化工艺条件、制造高质量产品的理论依据。本文综述了电弧增材制造传热传质数值模拟涉及的关键技术,并对未来研究方向进行了展望:首先,介绍了几种典型的热源模型,鉴于电弧增材制造过程中熔池的形成与演变是多种驱动力共同作用的结果,分析了浮力、电磁力、表面张力、电弧压力、电弧剪应力模型对流体流动和熔池表面变形的影响;然后,总结了三种金属过渡模型,包括速度入口填充液态金属、指定位置添加球状质量源项以及直接建立固态金属焊丝;最后,介绍了常用的气液界面跟踪方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭鑫鑫
魏正英
张永恒
张帅锋
关键词:  电弧增材制造  传热传质  数值模拟  熔池行为    
Abstract: The wire arc additive manufacturing (WAAM) process involves the feeding and melting of wire, the transition of metal to a molten pool, the convection of liquid metal within the pool, and solidification. Defects may arise due to the complex, multi-physics nature of the process. Therefore, it is necessary to comprehend these physical phenomena through high-fidelity numerical simulations to establish a theoretical foundation for optimizing process conditions and producing high-quality products. This paper provides a comprehensive review of the key technologies involved in the numerical modeling of heat and mass transfer within WAAM and offers an outlook on potential future research directions. First, an overview of various heat source models is presented. Given that the formation and evolution of the molten pool in the WAAM is influenced by multiple driving forces, an analysis of buoyancy, electromagnetic force, surface tension, arc pressure, and arc shear stress is conducted. The impact of these models on fluid flow and surface deformation of the molten pool is evaluated. Subsequently, three metal transition models are summarized, including utilizing a velocity inlet filled with liquid metal, incorporating a spherical mass source term at a designated position, and establishing a solid metal welding wire directly. Finally, the commonly employed gas-liquid interface tracking method is introduced.
Key words:  wire arc additive manufacturing    heat and mass transfer    numerical simulation    molten pool behavior
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TG444  
基金资助: 应用创新项目;国家自然科学基金(52275376)
通讯作者:  * 魏正英,西安交通大学机械与工程学院教授、博士研究生导师。主要研究方向为3D打印增材制造技术和灌溉施肥智能决测。已发表学术论文160余篇,其中63篇被SCI收录,50余篇被EI收录。其博士学位论文被评为2006年全国百篇优秀博士学位论文。申报专利76项,其中57项为发明专利(51项已授权)。获得的奖项包括2004年教育部提名国家技术发明一等奖,2005年国家技术发明二等奖,2006年教育部新世纪优秀人才,2008年陕西青年科技奖,2011年新疆生产建设兵团科学技术进步二等奖,2017年农科院杰出科技创新奖,以及2018年河南省科技进步一等奖。zywei@xjtu.edu.cn   
作者简介:  郭鑫鑫,2021年1月于北京科技大学获得工学硕士学位。现为西安交通大学机械工程学院博士研究生,在魏正英教授的指导下进行研究。目前主要研究领域为电弧增材制造陶瓷颗粒增强金属基复合材料的相关基础理论与应用技术。
引用本文:    
郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
GUO Xinxin, WEI Zhengying, ZHANG Yongheng, ZHANG Shuaifeng. An Overview of Numerical Simulation of Heat and Mass Transfer in Wire Arc Additive Manufacturing. Materials Reports, 2024, 38(9): 22090175-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090175  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22090175
1 Martin J H, Yahata B D, Hundley J M, et al. Nature, 2017, 549(7672), 365.
2 Lu B H. Surface Engineering & Remanufacturing, 2019, 19(1), 11 (in Chinese).
卢秉恒.表面工程与再制造, 2019, 19(1), 11.
3 Han Q F, Fu R, Hu J L, et al. Journal of Materials Engineering, 2022, 50(4), 62 (in Chinese).
韩启飞, 符瑞, 胡锦龙, 等. 材料工程, 2022, 50(4), 62.
4 Shi M, Xiong J, Zhang G, et al. Measurement, 2021, 185, 110001.
5 Rodrigues T A, Duarte V, Miranda R M, et al. Materials, 2019, 12(7), 1121.
6 He W, Wang J, Tao L U, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(8), 2323.
7 Xu F, Dhokia V, Colegrove P, et al. International Journal of Computer Integrated Manufacturing, 2018, 31(8), 785.
8 Srivastava S, Garg R K, Sharma V S, et al. Archives of Computational Methods in Engineering, 2021, 28(5), 3491.
9 Tian G, Wang W Y, Chang Q, et al. Materials Reports, 2021, 35(23), 23131 (in Chinese).
田根, 王文宇, 常青, 等. 材料导报, 2021, 35(23), 23131.
10 Ding D, Pan Z, Cuiuri D, et al. The International Journal of Advanced Manufacturing Technology, 2015, 81(1), 465.
11 Mannion B, Heinzman J. Tooling and Production, 1999, 5, 29.
12 Guo J, Zhou Y, Liu C, et al. Materials, 2016, 9(10), 823.
13 Chen X, Kong F, Fu Y, et al. The International Journal of Advanced Manufacturing Technology, 2021, 117(3), 707.
14 Wu B, Pan Z, Ding D, et al. Journal of Manufacturing Processes, 2018, 35, 127.
15 Guo X X, Chen Z H. Acta Aeronautica et Astronautica Sinica, 2021, 42(10), 234 (in Chinese).
郭鑫鑫, 陈哲涵. 航空学报, 2021, 42(10), 234.
16 Giarollo D F, Mazzaferro C C P, Mazzaferro J A E. Journal of the Brazi-lian Society of Mechanical Sciences and Engineering, 2022, 44(1), 1.
17 Mo C L, Qian B N, Guo X M, et al. Transactions of the China Welding Institution, 2001(3), 93 (in Chinese).
莫春立, 钱百年, 国旭明, 等. 焊接学报, 2001(3), 93.
18 Li C F, Xiao X, Yin Y X, et al. Transactions of Materials and Heat Treatment, 2020, 41(7), 25 (in Chinese).
李春凤, 肖笑, 尹玉祥, 等. 材料热处理学报, 2020, 41(7), 25.
19 Robin V, Tran-Van G, Carron D, et al. In: The 12th International Seminar ‘Numerical Analysis of Weldability’. Seggauberg, 2018, pp. 519.
20 Manurung Y, Prajadhiana K P, Adenan M S, et al. Archives of Civil and Mechanical Engineering, 2021, 21, 32.
21 Meng X, Qin G, Zou Z. International Journal of Heat and Mass Transfer, 2018, 117, 508.
22 Zhang T L, Xu G, Shen Y T, et al. Intelligent Computer and Applications, 2020,10(5), 251 (in Chinese).
张天雷, 徐刚, 沈艳涛, 等. 智能计算机与应用, 2020, 10(5), 251.
23 Ke W C, Oliveira J P, Cong B Q, et al. Additive Manufacturing, 2022, 50, 102513.
24 Fu J, Xiao B. Numerical simulation of material forming process, Chemical Industry Press, China, 2019, pp. 415 (in Chinese).
傅建, 肖兵. 材料成形过程数值模拟(第二版), 化学工业出版社, 2019, pp. 415.
25 Meng X, Qin G, Zou Z. International Journal of Heat and Mass Transfer, 2017, 107, 1119.
26 Wang S, Nates R, Pasang T, et al. Universal Journal of Mechanical Engineering, 2015, 3(5), 185.
27 Zong R, Chen J, Wu C, et al. Journal of Materials Processing Technology, 2021, 297, 117266.
28 Zhao W Y, Cao X Y, Du X W,et al. Journal of Mechanical Engineering, 2022, 58(1), 267 (in Chinese).
赵文勇, 曹熙勇, 杜心伟, 等. 机械工程学报, 2022, 58(1), 267.
29 Huang Y, Li H, Wang X X, et al. Transactions of the China Welding Institution, 2016, 37(8), 45 (in Chinese).
黄勇, 李慧, 王新鑫, 等. 焊接学报, 2016, 37(8), 45.
30 Kou S, Sun D K. Metallurgical Transactions A, 1985, 16(1), 203.
31 Cadiou S, Courtois M, Carin M, et al. International Journal of Heat and Mass Transfer, 2020, 148, 119102.
32 Zhou X M, Wang B Y, Yuan Y L, et al. Journal of Mechanical Enginee-ring, 2022, 58(10), 103.
周祥曼, 王礴允, 袁有录, 等. 机械工程学报, 2022, 58(10), 103.
33 Ou W, Mukherjee T, Knapp G L, et al. International Journal of Heat and Mass Transfer, 2018, 127, 1084.
34 Meng X, Qin G, Zou Z. Materials & Design, 2016, 94, 69.
35 Wu D, Tashiro S, Wu Z, et al. International Journal of Heat and Mass Transfer, 2020, 147, 118921.
36 Zhao W, Wei Y, Long J, et al. Welding in the World, 2021, 65(8), 1571.
37 Xu G X, Zhang W W, Liu P, et al. Acta Metallurgica Sinica, 2015, 51(6), 713 (in Chinese).
胥国祥, 张卫卫, 刘朋, 等. 金属学报, 2015, 51(6), 713.
38 Cao H, Huang R, Yi H, et al. Additive Manufacturing, 2022, 59, 103113.
39 Cho D W, Song W H, Cho M H, et al. Journal of Materials Processing Technology, 2013, 213(12), 2278.
40 Pan J J.Numerical analysis of the arc and molten pool characteristics in non-consumable electrode variable polarity arc welding of alumium process. Ph.D. Thesis, Tianjin University, China, 2016 (in Chinese).
潘家敬. 铝合金非熔化极变极性焊接电弧与熔池特性数值分析. 博士学位论文, 天津大学, 2016.
41 Rao Z H, Zhou J, Liao S M, et al. Journal of Applied Physics, 2010, 107(5), 054905.
42 Bai X, Colegrove P, Ding J, et al. International Journal of Heat and Mass Transfer, 2018, 124, 504.
43 Xu G X, Qian H W, Zhu J, et al. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2021, 35(1), 36 (in Chinese).
胥国祥, 钱红伟, 朱杰, 等. 江苏科技大学学报(自然科学版), 2021, 35(1), 36.
44 Huang J, Li Z, Yu S, et al. Welding in the World, 2022, 66(3), 481.
45 Du J, Zhang Y, Wei Z, et al. Additive Manufacturing, 2022, 58, 103039.
46 Ji F, Qin X, Hu Z, et al. International Communications in Heat and Mass Transfer, 2022, 130, 105789.
47 Cho D W, Park Y D, Cheepu M. International Communications in Heat and Mass Transfer, 2021, 125, 105243.
48 Shen H, Deng R, Liu B, et al. Applied Sciences, 2020, 10(12), 4322.
49 Zhou X M, Wang Y Q, Wang B Y, et al. Transactions of Materials and Heat Treatment, 2024, 45(3), 195 (in Chinese).
周祥曼, 王印权, 王礴允, 等. 材料热处理学报, 2024, 45(3), 195.
50 Guo X X, Zhang S F, Ma M, et al. Vacuum, 2024, 221, 112938.
51 Zhang Y, Wu D, Xie D, et al. International Journal of Heat and Mass Transfer, 2023, 212, 124289.
52 Xin J, Wu D, Shen C, et al. International Journal of Thermal Sciences, 2022, 179, 107641.
53 Cadiou S, Courtois M, Carin M, et al. Additive Manufacturing, 2020, 36, 101541.
54 Huan P C, Wei X, Wang X N, et al. Materials Letters, 2022, 327, 133032.
55 Hu J, Tsai H L. International Journal of Heat and Mass Transfer, 2007, 50(5-6), 833.
56 Hu J, Tsai H L. International Journal of Heat and Mass Transfer, 2007, 50(5-6), 808.
57 Meng X M, Qin G L, Bai X Y, et al. Journal of Materials Processing Technology, 2016, 236, 225.
58 Zhou X, Zhang H, Wang G, et al. International Journal of Heat and Mass Transfer, 2016, 103, 521.
59 Aryal P. Gas metal arc melt pool modelling: Effect of welding position and electromagnetic force mode. Ph.D. Thesis, University West, Sweden, 2021.
60 Wang D, Lu H. International Journal of Heat and Mass Transfer, 2021, 165, 120572.
61 Zhao Y, Chung H. International Journal of Heat and Mass Transfer, 2017, 111, 1129.
62 Cadiou S, Courtois M, Carin M, et al. In: The 12th International Seminar ‘Numerical Analysis of Weldability’. Seggauberg, 2018, pp. 1064.
63 Hejripour F, Valentine D T, Aidun D K. International Journal of Heat and Mass Transfer, 2018, 125, 471.
64 Ikram A, Chung H. Journal of Manufacturing Processes, 2021, 64, 1529.
[1] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[2] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[3] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[4] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[5] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[6] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[7] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[8] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[9] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[10] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[11] 耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
[12] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[13] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[14] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[15] 聂文, 许长炜, 彭慧天, 张少波. 矿井新型增润促凝喷雾降尘剂的研制与抑尘性能研究[J]. 材料导报, 2023, 37(15): 22030228-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed