1 State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China 2 Luoyang Ship Material Research Institute, Luoyang 471039, Henan, China
Abstract: The wire arc additive manufacturing (WAAM) process involves the feeding and melting of wire, the transition of metal to a molten pool, the convection of liquid metal within the pool, and solidification. Defects may arise due to the complex, multi-physics nature of the process. Therefore, it is necessary to comprehend these physical phenomena through high-fidelity numerical simulations to establish a theoretical foundation for optimizing process conditions and producing high-quality products. This paper provides a comprehensive review of the key technologies involved in the numerical modeling of heat and mass transfer within WAAM and offers an outlook on potential future research directions. First, an overview of various heat source models is presented. Given that the formation and evolution of the molten pool in the WAAM is influenced by multiple driving forces, an analysis of buoyancy, electromagnetic force, surface tension, arc pressure, and arc shear stress is conducted. The impact of these models on fluid flow and surface deformation of the molten pool is evaluated. Subsequently, three metal transition models are summarized, including utilizing a velocity inlet filled with liquid metal, incorporating a spherical mass source term at a designated position, and establishing a solid metal welding wire directly. Finally, the commonly employed gas-liquid interface tracking method is introduced.
1 Martin J H, Yahata B D, Hundley J M, et al. Nature, 2017, 549(7672), 365. 2 Lu B H. Surface Engineering & Remanufacturing, 2019, 19(1), 11 (in Chinese). 卢秉恒.表面工程与再制造, 2019, 19(1), 11. 3 Han Q F, Fu R, Hu J L, et al. Journal of Materials Engineering, 2022, 50(4), 62 (in Chinese). 韩启飞, 符瑞, 胡锦龙, 等. 材料工程, 2022, 50(4), 62. 4 Shi M, Xiong J, Zhang G, et al. Measurement, 2021, 185, 110001. 5 Rodrigues T A, Duarte V, Miranda R M, et al. Materials, 2019, 12(7), 1121. 6 He W, Wang J, Tao L U, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(8), 2323. 7 Xu F, Dhokia V, Colegrove P, et al. International Journal of Computer Integrated Manufacturing, 2018, 31(8), 785. 8 Srivastava S, Garg R K, Sharma V S, et al. Archives of Computational Methods in Engineering, 2021, 28(5), 3491. 9 Tian G, Wang W Y, Chang Q, et al. Materials Reports, 2021, 35(23), 23131 (in Chinese). 田根, 王文宇, 常青, 等. 材料导报, 2021, 35(23), 23131. 10 Ding D, Pan Z, Cuiuri D, et al. The International Journal of Advanced Manufacturing Technology, 2015, 81(1), 465. 11 Mannion B, Heinzman J. Tooling and Production, 1999, 5, 29. 12 Guo J, Zhou Y, Liu C, et al. Materials, 2016, 9(10), 823. 13 Chen X, Kong F, Fu Y, et al. The International Journal of Advanced Manufacturing Technology, 2021, 117(3), 707. 14 Wu B, Pan Z, Ding D, et al. Journal of Manufacturing Processes, 2018, 35, 127. 15 Guo X X, Chen Z H. Acta Aeronautica et Astronautica Sinica, 2021, 42(10), 234 (in Chinese). 郭鑫鑫, 陈哲涵. 航空学报, 2021, 42(10), 234. 16 Giarollo D F, Mazzaferro C C P, Mazzaferro J A E. Journal of the Brazi-lian Society of Mechanical Sciences and Engineering, 2022, 44(1), 1. 17 Mo C L, Qian B N, Guo X M, et al. Transactions of the China Welding Institution, 2001(3), 93 (in Chinese). 莫春立, 钱百年, 国旭明, 等. 焊接学报, 2001(3), 93. 18 Li C F, Xiao X, Yin Y X, et al. Transactions of Materials and Heat Treatment, 2020, 41(7), 25 (in Chinese). 李春凤, 肖笑, 尹玉祥, 等. 材料热处理学报, 2020, 41(7), 25. 19 Robin V, Tran-Van G, Carron D, et al. In: The 12th International Seminar ‘Numerical Analysis of Weldability’. Seggauberg, 2018, pp. 519. 20 Manurung Y, Prajadhiana K P, Adenan M S, et al. Archives of Civil and Mechanical Engineering, 2021, 21, 32. 21 Meng X, Qin G, Zou Z. International Journal of Heat and Mass Transfer, 2018, 117, 508. 22 Zhang T L, Xu G, Shen Y T, et al. Intelligent Computer and Applications, 2020,10(5), 251 (in Chinese). 张天雷, 徐刚, 沈艳涛, 等. 智能计算机与应用, 2020, 10(5), 251. 23 Ke W C, Oliveira J P, Cong B Q, et al. Additive Manufacturing, 2022, 50, 102513. 24 Fu J, Xiao B. Numerical simulation of material forming process, Chemical Industry Press, China, 2019, pp. 415 (in Chinese). 傅建, 肖兵. 材料成形过程数值模拟(第二版), 化学工业出版社, 2019, pp. 415. 25 Meng X, Qin G, Zou Z. International Journal of Heat and Mass Transfer, 2017, 107, 1119. 26 Wang S, Nates R, Pasang T, et al. Universal Journal of Mechanical Engineering, 2015, 3(5), 185. 27 Zong R, Chen J, Wu C, et al. Journal of Materials Processing Technology, 2021, 297, 117266. 28 Zhao W Y, Cao X Y, Du X W,et al. Journal of Mechanical Engineering, 2022, 58(1), 267 (in Chinese). 赵文勇, 曹熙勇, 杜心伟, 等. 机械工程学报, 2022, 58(1), 267. 29 Huang Y, Li H, Wang X X, et al. Transactions of the China Welding Institution, 2016, 37(8), 45 (in Chinese). 黄勇, 李慧, 王新鑫, 等. 焊接学报, 2016, 37(8), 45. 30 Kou S, Sun D K. Metallurgical Transactions A, 1985, 16(1), 203. 31 Cadiou S, Courtois M, Carin M, et al. International Journal of Heat and Mass Transfer, 2020, 148, 119102. 32 Zhou X M, Wang B Y, Yuan Y L, et al. Journal of Mechanical Enginee-ring, 2022, 58(10), 103. 周祥曼, 王礴允, 袁有录, 等. 机械工程学报, 2022, 58(10), 103. 33 Ou W, Mukherjee T, Knapp G L, et al. International Journal of Heat and Mass Transfer, 2018, 127, 1084. 34 Meng X, Qin G, Zou Z. Materials & Design, 2016, 94, 69. 35 Wu D, Tashiro S, Wu Z, et al. International Journal of Heat and Mass Transfer, 2020, 147, 118921. 36 Zhao W, Wei Y, Long J, et al. Welding in the World, 2021, 65(8), 1571. 37 Xu G X, Zhang W W, Liu P, et al. Acta Metallurgica Sinica, 2015, 51(6), 713 (in Chinese). 胥国祥, 张卫卫, 刘朋, 等. 金属学报, 2015, 51(6), 713. 38 Cao H, Huang R, Yi H, et al. Additive Manufacturing, 2022, 59, 103113. 39 Cho D W, Song W H, Cho M H, et al. Journal of Materials Processing Technology, 2013, 213(12), 2278. 40 Pan J J.Numerical analysis of the arc and molten pool characteristics in non-consumable electrode variable polarity arc welding of alumium process. Ph.D. Thesis, Tianjin University, China, 2016 (in Chinese). 潘家敬. 铝合金非熔化极变极性焊接电弧与熔池特性数值分析. 博士学位论文, 天津大学, 2016. 41 Rao Z H, Zhou J, Liao S M, et al. Journal of Applied Physics, 2010, 107(5), 054905. 42 Bai X, Colegrove P, Ding J, et al. International Journal of Heat and Mass Transfer, 2018, 124, 504. 43 Xu G X, Qian H W, Zhu J, et al. Journal of Jiangsu University of Science and Technology (Natural Science Edition), 2021, 35(1), 36 (in Chinese). 胥国祥, 钱红伟, 朱杰, 等. 江苏科技大学学报(自然科学版), 2021, 35(1), 36. 44 Huang J, Li Z, Yu S, et al. Welding in the World, 2022, 66(3), 481. 45 Du J, Zhang Y, Wei Z, et al. Additive Manufacturing, 2022, 58, 103039. 46 Ji F, Qin X, Hu Z, et al. International Communications in Heat and Mass Transfer, 2022, 130, 105789. 47 Cho D W, Park Y D, Cheepu M. International Communications in Heat and Mass Transfer, 2021, 125, 105243. 48 Shen H, Deng R, Liu B, et al. Applied Sciences, 2020, 10(12), 4322. 49 Zhou X M, Wang Y Q, Wang B Y, et al. Transactions of Materials and Heat Treatment, 2024, 45(3), 195 (in Chinese). 周祥曼, 王印权, 王礴允, 等. 材料热处理学报, 2024, 45(3), 195. 50 Guo X X, Zhang S F, Ma M, et al. Vacuum, 2024, 221, 112938. 51 Zhang Y, Wu D, Xie D, et al. International Journal of Heat and Mass Transfer, 2023, 212, 124289. 52 Xin J, Wu D, Shen C, et al. International Journal of Thermal Sciences, 2022, 179, 107641. 53 Cadiou S, Courtois M, Carin M, et al. Additive Manufacturing, 2020, 36, 101541. 54 Huan P C, Wei X, Wang X N, et al. Materials Letters, 2022, 327, 133032. 55 Hu J, Tsai H L. International Journal of Heat and Mass Transfer, 2007, 50(5-6), 833. 56 Hu J, Tsai H L. International Journal of Heat and Mass Transfer, 2007, 50(5-6), 808. 57 Meng X M, Qin G L, Bai X Y, et al. Journal of Materials Processing Technology, 2016, 236, 225. 58 Zhou X, Zhang H, Wang G, et al. International Journal of Heat and Mass Transfer, 2016, 103, 521. 59 Aryal P. Gas metal arc melt pool modelling: Effect of welding position and electromagnetic force mode. Ph.D. Thesis, University West, Sweden, 2021. 60 Wang D, Lu H. International Journal of Heat and Mass Transfer, 2021, 165, 120572. 61 Zhao Y, Chung H. International Journal of Heat and Mass Transfer, 2017, 111, 1129. 62 Cadiou S, Courtois M, Carin M, et al. In: The 12th International Seminar ‘Numerical Analysis of Weldability’. Seggauberg, 2018, pp. 1064. 63 Hejripour F, Valentine D T, Aidun D K. International Journal of Heat and Mass Transfer, 2018, 125, 471. 64 Ikram A, Chung H. Journal of Manufacturing Processes, 2021, 64, 1529.