Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22090197-9    https://doi.org/10.11896/cldb.22090197
  无机非金属及其复合材料 |
道路沥青疲劳与断裂特性研究进展及发展趋势
王超*, 宋立昊, 孙彦广, 宫官雨
北京工业大学城市建设学部,北京 100124
New Developments and Future Trends on Fatigue and Fracture Characteristics of Paving Asphalt Binder
WANG Chao*, SONG Lihao, SUN Yanguang, GONG Guanyu
Faculty of Urban Construction, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 4414KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 疲劳开裂是沥青路面的主要病害之一,其产生与发展直接制约着道路基础设施生命周期的服役水平与行车舒适安全。近年来,沥青疲劳特性及其对路面抗疲劳性能的贡献日益得到关注,聚焦和解析沥青尺度的疲劳与断裂特性对我国未来沥青路面实现长寿命耐久服役具有重要意义。目前评价沥青疲劳与断裂性能的室内测评手段及数据建模分析方法较多,但尚未形成统一的测评技术体系。随着近年来的不断探索,在试验测评方法方面,逐渐形成了以线性振幅扫描试验为代表的沥青疲劳性能加速测评手段,且其与传统时间扫描疲劳试验均体现出较好的一致性;而在数据分析与建模方法方面,线黏弹特性、耗散能、虚应变能分析以及断裂力学相关方法被逐步应用,驱动沥青疲劳和断裂特性的评价与研究体系逐步从经验走向精准。本文主要从疲劳与断裂测评手段、损伤及失效行为特征判别、疲劳寿命预测方法三方面系统地梳理和归纳沥青疲劳与断裂特性研究方向的最新进展,同时分析了目前沥青尺度疲劳与断裂特性研究尚且存在的问题,展望了未来研究发展趋势,为我国抗疲劳长寿命沥青路面理论与技术的不断发展提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王超
宋立昊
孙彦广
宫官雨
关键词:  道路工程  沥青  疲劳  断裂  失效准则  疲劳寿命    
Abstract: Fatigue cracking is one of the main distresses in asphalt pavement and its deterioration directly impacts the service and safety during the life cycle of road infrastructure. Recently, the fatigue characteristic of asphalt binder and its contribution to the anti-fatigue performance of asphalt pavement are gradually getting more attentions. Focusing and analyzing the fatigue and fracture characteristics of asphalt binder is of great significance for the national realization of long-life asphalt pavement in the future. In recent years, various laboratory testing methods and data modeling approaches have been developed for the binder fatigue and fracture performance evaluation, whereas the corresponding specification system has not been fully established. For the testing protocol, the accelerated fatigue procedures such as the linear amplitude sweep have been gradually implemented and verified with the time sweep fatigue test. Regarding to the data interpretation, the applications of the linear viscoelastic characteristics, dissipated energy, pseudo strain energy and fracture mechanics gradually drive the studies of binder fatigue and fracture from empiricism to accuracy. This paper systematically reviews the recent developments on binder fatigue and fracture testing protocols, damage characterizing approaches and fatigue life predictive models, followed by summarizing the existing problems and future prospects in this research area. This review would provide help and reference for the ongoing development of fatigue resistance design and long-life asphalt pavement technology.
Key words:  road engineering    asphalt    fatigue    fracture    failure criterion    fatigue life
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  U414  
基金资助: 国家自然科学基金(52078017)
通讯作者:  * 王超, 北京工业大学城市建设学部校聘教授、博士研究生导师,2010年6月、2015年7月分别于重庆交通大学和北京工业大学获得工学学士学位和博士学位。主要从事沥青路面结构与材料方向的研究工作,先后主持国家及省部级科研项目多项,发表学术研究论文30余篇。wangchao@bjut.edu.cn   
引用本文:    
王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
WANG Chao, SONG Lihao, SUN Yanguang, GONG Guanyu. New Developments and Future Trends on Fatigue and Fracture Characteristics of Paving Asphalt Binder. Materials Reports, 2024, 38(9): 22090197-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090197  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22090197
1 Braham A, Underwood B S. State of the art and practice in fatigue cracking and evaluation of asphalt concrete pavements (Version 1.0). In,Technical Report from the Association of Asphalt Paving Technologists (AAPT), Lino Lakes MN, USA, 2016.
2 Lyu S T, Qu F T, Liu C C, et al. China Journal of Highway and Transport, 2020, 33(10), 67 (in Chinese).
吕松涛, 屈芳婷, 刘超超, 等.中国公路学报, 2020, 33(10), 67.
3 Underwood B S. Multiscale constitutive modeling of asphalt concrete. Ph.D. Thesis, North Carolina State University, USA, 2011.
4 Gong X B. Mechanical behavior within multi scales and united models of asphalt pavement materials. Ph.D. Thesis, Harbin Institute of Technology, China, 2017 (in Chinese).
龚湘兵. 沥青路面材料多尺度域力学行为及统一模型. 博士学位论文, 哈尔滨工业大学, 2017.
5 Wang L, Guo N S, Wen Y K, et al. Materials Reports, 2020, 34(18),18065 in Chinese).
王淋, 郭乃胜, 温彦凯, 等.材料导报, 2020, 34(18), 18065.
6 Zhang X J, Tong P P, Lin X X, et al. Materials Reports, 2021, 35(18), 18083 (in Chinese).
张喜军, 仝配配, 蔺习雄, 等. 材料导报, 2021, 35(18), 18083.
7 Liang B, Lan F, Zheng J L. Materials Reports, 2021, 35(9), 9083 (in Chinese).
梁波, 兰芳, 郑健龙.材料导报, 2021, 35(9), 9083.
8 Suo Z, Chen H, Zhang A, et al. Materials Reports, 2021, 35(S1), 662 (in Chinese).
索智, 陈欢, 张奥, 等. 材料导报, 2021, 35(S1), 662.
9 Zhu H Z, Fan S P, Lu Z T, et al. Journal of Highway and Transportation Research and Development, 2019, 36(9), 8 (in Chinese)
朱洪洲, 范世平, 卢章天, 等. 公路交通科技, 2019, 36(9), 8.
10 Zhang Y, Gao Y. Road Materials and Pavement Design, 2021, 22(3), 603.
11 Fan S P, Zhu H Z. Materials Reports, 2021, 35(18), 18090 (in Chinese).
范世平, 朱洪洲. 材料导报, 2021,35(18), 18090
12 Zhu J Y, He Z Y. Materials Reports, 2018, 32(5), 847(in Chinese).
朱建勇, 何兆益.材料导报, 2018,32(5), 847.
13 Petersen J C, Robertson R E, Branthaver J F, et al. Binder Characterization and Evaluation Volume 1, SHRP-A-367. National Research Council, USA, 1994.
14 Petersen J C, Robertson R E, Branthaver J F, et al. Binder Characterization and Evaluation Volume 4, Test Methods SHRP-A-370. National Research Council, USA, 1994.
15 Anderson D A, Kennedy T. Journal of Asphalt Paving Technologists, 1993, 62, 481.
16 Bahia H U, Hanson D I, Zeng M, et al. Characterization of Modified Asphalt Binders in Superpave Mix Design. NCHRP Report 459, Transportation Research Board, USA, 2001.
17 Bahia H U, Zhai H, Zeng M, et al. Asphalt Paving Technology, 2001,70, 442.
18 Li L, Wu C, Cheng Y, et al. Construction and Building Materials, 2022, 327, 126940.
19 Yang K, Li R, Underwood B S, et al. Construction and Building Mate-rials, 2022, 337, 127566.
20 Johnson C M. Estimatingasphalt binder fatigue pesistance using an acce-lerated test method. Ph.D. Thesis, University of Wisconsin-Madison, USA, 2010.
21 Hintz C, Velasquez R, Johnson C, et al. Journal of the Transportation Research Board, 2011, 2207, 99.
22 Hintz C. Understanding mechanisms leading to asphalt binder fatigue. Ph.D. Thesis, The University of Wisconsin-Madison, USA, 2012.
23 AASHTO TP 101-12. Standard method of test for estimating fatigue resis-tance of asphalt binders using the linear amplitude sweep. Washington, DC, 2012.
24 Wang C, Castorena C, Zhang J, et al. Journal of Association of Asphalt Paving Technologists, 2015, 84, 269.
25 Bahia H, Wen H, Johnson C M. Transportation Research E-Circular, 2010.
26 American Association of State Highway and Transportation Officials (AASHTO) TP 123. Measuring asphalt binder yield energy and elastic recovery using the dynamic shear rheometer. Washington, D C, 2016.
27 Wang C, Xue L, Xie W, et al. Construction and Building Materials, 2018, 167, 348.
28 Singh D, Kuity A, Girimath S, et al. Journal of Materials in Civil Engineering, 2020, 32(11), 04020323.
29 Andriescu A, Hesp S, Youtcheff J. Transportation Research Record Journal of the Transportation Research Board, 2004, 1875,1.
30 Bodley T, Andriescu A, Hesp S, et al. Asphalt Paving Technology-Proceedings, 2007, 76, 345.
31 Nie Yihua, Hu Jingxuan. Journal of China & Foreign Highway, 2018, 38(3), 242(in Chinese).
聂忆华,胡静轩.中外公路, 2018, 38(3), 242.
32 MTO LS-299. Method of test for determination of asphalt cement’s resis-tance to ductile failure using double edge notched tension (DENT) test. Ontario, 2012.
33 Niu T. Development of a binder fracture test to determine fracture energy. Ph.D. Thesis, University of Florida, USA, 2012.
34 Niu T, Roque R, Lopp G. Road Materials and Pavement Design, 2014, 15, 219.
35 Yan Y, Hernando D, Roque R. Journal of Materials in Civil Engineering, 2017, 29(9), 04017108.
36 Yan Y, Cocconcelli C, Roque R, et al. Road Materials and Pavement Design, 2015, 16, 389.
37 American Association of State Highway and Transportation Officials (AASHTO) TP 127. Determining the fracture energy density of asphalt binder using the binder fracture energy (BFE) test. Washington DC, 2017.
38 Tsai B W, Monismith C L, Dunning M, et al. Journal of the Association of Asphalt Paving Technologists, 2005, 74, 733.
39 Shan L Y. Fatigue & rheology mechanism of asphalt binder based on viscoelastic characteristic. Ph.D. Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
单丽岩. 基于粘弹特性的沥青疲劳-流变机理研究. 博士学位论文, 哈尔滨工业大学, 2010.
40 Wang C, Zhang H, Castorena C, et al. Construction and Building Mate-rials, 2016, 121, 535.
41 Xiang H, He Z Y, Chen L X, et al. Journal of Building Materials, 2019, 22(2), 292 (in Chinese).
向浩, 何兆益, 陈柳晓, 等. 建筑材料学报, 2019, 22(2), 292.
42 Shafabakhsh G, Motamedi M, Firouznia M, et al. Petroleum Science and Technology, 2019, 37(13), 1495.
43 AASHTO TP 101-14. Standard method of test for estimating fatigue tole-rance of asphalt binders using the linear amplitude dweep. Washington DC, 2014.
44 Zhou S W, Shi J T, Zhang R, et al. Petroleum Asphalt, 2018, 32(2), 27 (in Chinese).
周水文, 时敬涛, 张蓉, 等. 石油沥青, 2018, 32(2), 27.
45 Micaelo R, Pereira A, Quaresma L, et al. Construction and Building Materials, 2015, 98, 703.
46 Motamedi M, Shafabakhsh G, Azadi M. Journal of Materials in Civil Engineering, 2020, 32(8), 04020218.
47 Wang Chao. Rheological characterization on paving performance of asphalt binder. Ph.D. Thesis, Beijing University of Technology, China, 2015 (in Chinese).
王超. 沥青结合料路用性能的流变学研究. 博士学位论文, 北京工业大学, 2015.
48 Shan L, Tian S, He H, et al. Fuel, 2017, 189, 293.
49 Shen S, Lu X. Journal of Testing and Evaluation, 2011, 39(3), 313.
50 Zhu Hongzhou, Fan Shiping, Lu Zhangtian. Journal of Highway and Transportation Research and Development, 2017, 34(11), 8 (in Chinese).
朱洪洲, 范世平, 卢章天. 公路交通科技, 2017, 34(11), 8.
51 Omairey E L, Zhang Y, Gu F, et al. Construction and Building Mate-rials, 2020, 265, 120307.
52 Wang M, Lin F J, Liu L P. Journal of Building Materials, 2015, 18(6), 1024 (in Chinese).
王明, 林发金, 刘黎萍. 建筑材料学报, 2015, 18(6), 1024.
53 Xu F, Xu Y. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2019, 43(1), 164 (in Chinese).
余峰, 许苑. 武汉理工大学学报(交通科学与工程版), 2019, 43(1), 164.
54 Ameri M, Seif M, Abbasi M, et al. Construction and Building Materials, 2017, 136, 184.
55 Wang C X, Wang L Z, Wang P. Journal of Shandong Jianzhu University, 2015, 30(5), 456(in Chinese).
王承献, 王立志, 王鹏. 山东建筑大学学报, 2015, 30(5), 456.
56 Zhang J, Zhang X D, Wang W S. Journal of Highway and Transportation Research and Development, 2020, 37(10),11 (in Chinese).
张俊, 张晓德, 王文珊.公路交通科技, 2020, 37(10),11.
57 Shan L Y, Tan Y Q, Xu Y N, et al. China Journal of Highway and Transport, 2016, 29(1), 16 (in Chinese).
单丽岩, 谭忆秋, 许亚男, 等. 中国公路学报, 2016, 29(1), 16.
58 Tian S, Shan L Y, Xu Y N. Journal of Building Materials, 2019, 22(3), 408 (in Chinese).
田霜, 单丽岩, 许亚男. 建筑材料学报, 2019, 22(3), 408.
59 Li Y, Sun H, He X, et al. Construction and Building Materials, 2020, 234, 117416.
60 Kim Y R, Lee H J, Little D N. Journal of the Association of Asphalt Pa-ving Technologists, 1997.
61 Wang C, Xie W, Chen Y, et al. Journal of Materials in Civil Enginee-ring, 2018, 30(2), 04017286.
62 Cao W, Wang C. International journal of fatigue, 2019, 119, 112.
63 Safaei F, Castorena C, Kim Y R. Mechanics of Time-Dependent Materials, 2016, 20(3), 299.
64 Yu S W. Mechanics in Engineering, 2015(3), 5 (in Chinese).
余寿文.力学与实践, 2015(3), 5.
65 Cui D G, Bao R, Zhang R, et al. Acta Aeronauticate Astronautica Sinica, 2021, 42(5), 524394 (in Chinese).
崔德刚, 鲍蕊, 张睿, 等.航空学报, 2021, 42(5), 524394.
66 Hintz C, Bahia H. Road Materials and Pavement Design, 2013, 14, 231.
67 Nuñez J Y M, Leonel E D, Faxina A L. Engineering Fracture Mechanics, 2016, 154, 1.
68 Murakami Y, Takahashi K, Kusumoto R. Fatigue & Fracture of Enginee-ring Materials & Structures, 2003, 26, 523.
69 Wang C, Chen Y, Song L. Journal of Materials in Civil Engineering, 2020, 32(12), 04020362.
70 Shi C, Xing C, Yi X, et al. Construction and Building Materials, 2020, 272(22).
71 Shi C, Zhou W, Wang T, et al. Journal of Cleaner Production, 2022, 331, 129979.
72 Gao Y, Li L, Zhang Y. Transportation Research Record Journal of the Transportation Research Board, 2020, 2674(1), 94.
73 Li H, Luo X, Yan W, et al. Mechanics of Materials, 2020, 148, 103462.
74 Camargo F F, Vasconcelos K, Bernucci L L. Transportation Research Record, 2019, 2673(4), 524.
75 Cao W, Wang Y, Wang C. Construction and Building Materials, 2019, 208, 686.
76 Kuchiishi A K, Carvalho J P B, Bessa I S, et al. Applied Rheology, 2019, 29(1), 30.
77 Liu Y Z. Research on mechanical properties of cement emulsified asphalt binder under aging effects. Ph.D. Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
刘钰泽. 老化影响下的水泥乳化沥青胶结料力学性能研究. 博士学位论文, 哈尔滨工业大学, 2019.
78 Cao W, Li X, Wang Y, et al. Journal of Materials in Civil Engineering, 2019, 31(12), 04019300.1.
79 Luo P D. Study on freeze thaw damage characteristics of cement-asphalt composite binder. Ph.D. Thesis, Harbin Institute of Technology, China,2018 (in Chinese).
骆沛东. 水泥沥青复合胶结料冻融损伤特性研究. 博士学位论文, 哈尔滨工业大学, 2018.
80 Wan T T, Zou G L. Construction Machinery and Construction Technology, 2012, 29(12),74 (in Chinese).
万涛涛, 邹桂莲. 筑路机械与施工机械化, 2012, 29(12),74.
81 Chen J S, Tsai C J. Journal of Materials Engineering and Performance, 1999, 8(4), 443.
82 Giuliani F, Merusi F. Road Materials and Pavement Design, 2010, 11, 197.
83 Shadman M, Ziari H. Construction and Building Materials, 2017, 138, 434.
84 Apostolidis P, Kasbergen C, Bhasin A, et al. Transportation Research Record, 2018, 2672(28), 290
85 Liu H, Luo R. Materials and Structures, 2020, 53(1),1.
86 Wang C, Chen Y, Xie W. Materials and Structures, 2020, 53(4), 1
87 Safaei F, Castorena C. Materials & Design, 2017, 133, 376
88 Li H, Luo X, Zhang Y, et al. Engineering Fracture Mechanics, 2021(1),107566.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[3] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[4] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[5] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[6] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[7] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[8] 黄奎龙, 余刚, 方修洋, 张昊楠. 踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性[J]. 材料导报, 2024, 38(4): 22060161-5.
[9] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[10] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[11] 兰雪江, 张翛, 王永宝, 郝忠卿. 水泥稳定再生碎石物理力学性能研究进展[J]. 材料导报, 2024, 38(2): 22040402-12.
[12] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[13] 秦盛伟, 邸黎寅, 王连翔, 张承昊. 渗碳工艺对18CrNiMo7-6合金钢缺口件疲劳性能的影响[J]. 材料导报, 2024, 38(2): 22100180-7.
[14] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[15] 蒋修明, 丁湛, 孙超, 岳磊, 栗慧峰, 栗培龙. 生物基树脂改性沥青流变特性评价及体系融合行为[J]. 材料导报, 2024, 38(2): 22040409-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed