Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 23010056-8    https://doi.org/10.11896/cldb.23010056
  金属与金属基复合材料 |
Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算
王万祯*
宁波大学土木工程与地理环境学院,浙江 宁波 315211
Calculation Model of Fatigue Crack Initiation Life and Total Fatigue Life Calculation of Q460C Steel Notched Plates
WANG Wanzhen*
School of Civil Engineering, Geography and Environment, Ningbo University, Ningbo 315211, Zhejiang, China
下载:  全 文 ( PDF ) ( 11042KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于位错随循环加载次数的增加加速移动、聚合形成疲劳裂纹的试验事实,假设疲劳裂纹萌生速率是循环加载次数的单调递增幂函数,通过积分推导出疲劳裂纹萌生寿命计算模型。Q460C钢缺口板的疲劳试验结果显示,疲劳裂纹萌生寿命、扩展寿命和总疲劳寿命均随应力幅和名义最大应力的降低而增加,疲劳裂纹形成寿命与总疲劳寿命的比值为0.82~0.90。我国《钢结构设计标准》建议的总疲劳寿命计算式的计算误差为-17.0%~+84.9%。以椭球面断裂模型作为裂尖开裂判据,对Q460C钢缺口板的疲劳裂纹扩展进行了理论计算和数值模拟。以疲劳裂纹萌生处应变溢出时裂纹长度0.05 mm作为疲劳裂纹萌生临界尺寸,标定的Q460C钢缺口板的疲劳裂纹萌生寿命计算式、扩展寿命计算式和总疲劳寿命计算式的计算误差分别为-15.0%~-1.2%、-12.4%~+2.8%和-12.1%~-1.4%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王万祯
关键词:  缺口板  疲劳试验  疲劳裂纹  萌生寿命  扩展寿命  椭球面断裂模型    
Abstract: Based on the experimental fact that the rate of dislocation movement and polymerization to form fatigue crack accelerates with the number of cyclic loads, it is assumed that the fatigue crack initiation rate is a monotonically increasing power function of the number of cyclic loads. The calculation model of fatigue crack initiation life is derived by integrating the power function between the fatigue crack initiation rate and the number of cyclic loads. The fatigue test results of Q460C steel notched plates show that the fatigue crack initiation life, propagation life and total fatigue life increase with the decrease of stress amplitude and nominal maximum stress, and the ratio of fatigue crack initiation life to total fatigue life ranges from 0.82 to 0.90. The calculated error of the fatigue life calculation formula recommended in China’s code ‘Standard for design of steel structures’ is -17.0%—+84.9%. Considering an ellipsoidal fracture model of structural steel originally proposed by the author as the instability propagation (fracture) criterion of fatigue crack, a set of theoretical calculation and numerical simulation were established to investigate the fatigue cracking of the notched plates. Taking a crack length of 0.05 mm at which the strain over flows at the site of fatigue crack initiation as the critical size of fatigue crack initiation, the calculated errors of the calibrated fatigue crack initiation life formula, propagation life formula and total fatigue life formula of the Q460C steel notched plates are -15.0%—-1.2%, -12.4%—+2.8% and -12.1%—-1.4%, respectively.
Key words:  notched plates    fatigue test    fatigue crack    initiation life    propagation life    ellipsoidal fracture model
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  TU391  
基金资助: 宁波市公益性科技计划项目(2022S179;2023S101)
通讯作者:  *王万祯,宁波大学土木工程与地理环境学院教授、硕士研究生导师。1997年7月西安建筑科技大学土木工程专业本科毕业,2003年3月西安建筑科技大学结构工程专业博士毕业后到兰州理工大学工作,2009年10月到宁波大学工作至今。目前主要从事金属材料和结构的断裂与疲劳等方面的研究工作。发表论文100余篇,包括Journal of Constructional Steel Research、Fatigue & Fracture of Engineering Materials & Structures、Structures、《土木工程学报》《建筑结构学报》《固体力学学报》《工程力学》《建筑材料学报》等。wangwanzhen1975@sina.com   
引用本文:    
王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
WANG Wanzhen. Calculation Model of Fatigue Crack Initiation Life and Total Fatigue Life Calculation of Q460C Steel Notched Plates. Materials Reports, 2024, 38(4): 23010056-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010056  或          http://www.mater-rep.com/CN/Y2024/V38/I4/23010056
1 Chen S F, Gu Q. Steel structures:basic theory of steel structures, Architecture Industrial Press of China, China, 2003, pp.306(in Chinese).
陈绍蕃, 顾强. 钢结构:钢结构基础, 中国建筑工业出版社, 2003, pp.306.
2 Neuber H. Journal of Applied Mechanics, 1961, 28, 547.
3 Paris P C, Erdogan F. Journal of Basic Engineering, 1963, 85D, 528.
4 Guo H C, Wan J H, Liu Y H, et al. Thin-Walled Structures, 2018, 131, 45.
5 Guo H C, Mao K H, Liu Y H, et al. Thin-Walled Structures, 2019, 138, 243.
6 Zong L, Guo S C, Liao X W, et al. Journal of Building Structures, DOI:10. 14006/j. jzjgxb(in Chinese).
宗亮, 郭世超, 廖小伟, 等. 建筑结构学报, DOI:10. 14006/j. jzjgxb.
7 Jie Z Y, Wang K N, Liang S D. Journal of Constructional Steel Research, 2022, 196, 107443.
8 Cheng B, Huang F H, Duan Y H, et al. Journal of Structure Enginee-ring, 2021, 147, 04021167.
9 Huang F H, Cheng B, Duan Y H, et al. Thin-Walled Structures, 2021, 161, 107446.
10 Sedmak A, Hemer A, Sedmak S A, et al. International Journal of Fatigue, 2021, 150, 106298.
11 Shen Z Y, Chen Y J, Chen Y Y. Basic principle of steel structures, Architecture Industrial Press of China, China, 2005, pp.29(in Chinese).
沈祖炎, 陈扬骥, 陈以一. 钢结构基本原理, 中国建筑工业出版社, 2005, pp.29.
12 Wang W Z. Engineering Mechanics, 2008, 25(5), 27(in Chinese).
王万祯. 工程力学, 2008, 25(5), 27.
13 Wang W Z. Journal of Harbin Institute Technology, 2019, 51(12), 58(in Chinese).
王万祯. 哈尔滨工业大学学报, 2019, 51(12), 58.
14 Ministry of Housing and Uran-Rural Development of the People’s Republic of China. GB50017-2017. Standard for design of steel structures, Architecture Industrial Press of China, China, 2017(in Chinese).
中华人民共和国城乡建设部. GB50017-2017. 钢结构设计标准, 中国建筑工业出版社, 2017.
15 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T. 3075-2008. Metallic materials-fatigue testing-axial-force-controlled method, China Standards Press, China, 2009(in Chinese).
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 3075-2008, 金属材料疲劳试验轴向力控制方法, 标准出版社, 2009.
16 Wang Y H, Wei A A, Wang L, et al. Machinery Design & Manufacture, 2012(3), 231(in Chinese).
王友华, 魏安安, 汪磊, 等. 机械设计与制造, 2012(3), 231.
17 Shang D G, Wang D J, Han N L. Journal of Mechanical Strength, 1996, 18(2), 59(in Chinese).
尚德广, 王德俊, 韩楠林. 机械强度, 1996, 18(2), 59.
[1] 黄奎龙, 余刚, 方修洋, 张昊楠. 踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性[J]. 材料导报, 2024, 38(4): 22060161-5.
[2] 钟颖, 邵永波, 高旭东, 罗霞飞, 朱红梅, 杨冬平. 应力比对EH36钢在海洋腐蚀环境中疲劳裂纹扩展速率的影响[J]. 材料导报, 2023, 37(19): 22050330-7.
[3] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[4] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[5] 高旭东, 邵永波, 郭永健, 钟颖, 罗霞飞. 应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响[J]. 材料导报, 2022, 36(15): 21040303-6.
[6] 范凌云, 高婧, 李锦峰, 周海俊. 层压型CFRP环带疲劳试验中接触面温度场分析[J]. 材料导报, 2022, 36(1): 20110148-7.
[7] 岑耀东, 陈林, 董瑞, 周庆飞. 自回火对重轨钢疲劳裂纹扩展行为的影响[J]. 材料导报, 2021, 35(12): 12136-12140.
[8] 张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
[9] 白光乾, 王秋岩, 邓海全, 李冬林, 李云. 氢环境下X52管线钢的抗氢性能[J]. 材料导报, 2020, 34(22): 22130-22135.
[10] 高旭东, 邵永波, 谢丽媛, 杨冬平. X56海底管道在腐蚀环境下疲劳裂纹扩展过程预测[J]. 材料导报, 2020, 34(2): 2123-2130.
[11] 陈跃良, 吴省均, 卞贵学, 张勇, 王安东, 黄海亮, 张柱柱. 基于Gerber模型的DFR腐蚀折算系数及其试验测定[J]. 材料导报, 2019, 33(16): 2793-2798.
[12] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[13] 冷建成, 李政达, 王玉洁, 周临风. 循环应力对磁记忆效应影响的试验研究[J]. 材料导报, 2019, 33(10): 1723-1727.
[14] 雷蕾, 何晓聪, 高爱凤, 赵得锁. 粘接剂对1420铝锂合金压印接头疲劳性能的影响[J]. 材料导报, 2018, 32(16): 2809-2815.
[15] 孙志礼, 柴小冬, 柳溪溪, 王健. 基于损伤力学的疲劳裂纹萌生及扩展规律研究*[J]. CLDB, 2017, 31(8): 130-134.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed