Effect of Stress Ratio on Fatigue Crack Growth Rate of EH36 Steel in the Marine Corrosive Environment
ZHONG Ying1, SHAO Yongbo1,*, GAO Xudong2, LUO Xiafei2, ZHU Hongmei2, YANG Dongping3
1 School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China 2 School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China 3 Technology Inspection Center, China Petroleum & Chemical Corporation, Dongying 257062, Shandong, China
Abstract: EH36 steel is widely used in large offshore platforms due to its high strength, excellent toughness at low temperature and light weight. To eva-luate the influence of stress ratio on the corrosion fatigue performance of EH36 steel in the marine corrosive environment, the fatigue crack growth tests of EH36 steel were carried out in laboratory air, seawater environment and splashing environment at three different stress ratios (R=0.1, 0.3, 0.5), respectively. It is concluded that the fatigue crack growth rate of EH36 steel was accelerated by increasing stress ratio R in all three environments for a given value of the stress intensity factor range (ΔK). The stress ratio R has great influence on the crack growth rate in air, but has little effect on the material constants C and m. Increasing the stress ratio in the seawater and splashing environment promotes crack growth and changes the material constants C and m as well. It is evident that the crack growth rates in seawater and splashing environment are higher than those in the air under the same loading conditions, and the effects of both corrosion environments have almost identical effects on fatigue crack growth behavior. The fracture morphology of the specimens in the air environment shows quasi-cleavage fracture characteristics. It is almost the same fracture morphology in both corrosion environments, which is close to cleavage fracture.
1 Zhu Q, Zhang P, Peng X, et al. Materials, 2021, 14(21), 6621. 2 Wahab M A, Sakano M. Journal of Materials Processing Technology, 2001, 118(1-3), 116. 3 Jia Z, Yang Y, He Z, et al. Applied Ocean Research, 2019, 93, 101942. 4 Su M, Xu L, Peng C, et al. International Journal of Fatigue, 2022, 156, 106689. 5 Hong B, Huang Y, Wu Z M. Journal of Water Resources and Architectural Engineering, 2015, 13(5), 136(in Chinese). 洪波, 黄一, 吴智敏. 水利与建筑工程学报, 2015, 13(5), 136. 6 Cheng Y W. International Journal of Fatigue, 1985, 7(2), 95. 7 Weng L, Zhang J, Kalnaus S, et al. International Journal of Fatigue, 2013, 48, 156. 8 Hao W, Liu Z, Wu W, et al. Materials Science and Engineering:A, 2018, 710, 318. 9 Zhang S F, Zeng W D, Long Y, et al. Rare Metal Materials and Engineering, 2018, 47(12), 3741(in Chinese). 张赛飞, 曾卫东, 龙雨, 等. 稀有金属材料与工程, 2018, 47(12), 3741. 10 Guo H C, Wei H C, Yang D X, et al. China Civil Engineering Journal, 2021, 54(5), 10(in Chinese). 郭宏超, 魏欢欢, 杨迪雄, 等. 土木工程学报, 2021, 54(5), 10. 11 Wang K, Wu L, Li Y, et al. Ocean Engineering, 2020, 216, 107789. 12 Li Z Y, Wang G, Luo S W, et al. Journal of Chinese Society for Corrosion and Protection, 2020, 40(5), 463(in Chinese). 李子运, 王贵, 罗思维, 等. 中国腐蚀与防护学报, 2020, 40(5), 463. 13 Barbosa L H S, Modenesi P J, Godefroid L B, et al. International Journal of Fatigue, 2019, 119, 43. 14 Wang J, Zhang M, Tan X, et al. Materials Science and Engineering:A, 2020, 777, 139049. 15 Wu H B, Liang G L, Tang D. Transactions of the China Welding Institution, 2012, 33(2), 57(in Chinese). 武会宾, 梁国俐, 唐荻. 焊接学报, 2012, 33(2), 57. 16 GB/T 6398-20017. Metallic materials-fatigue testing-fatigue crack growth method. Standardization Administration of the P. R. C, China, 2017(in Chinese). GB/T 6398-2017. 金属材料疲劳裂纹扩展速率试验方法. 中华人民共和国标准化管理委员会, 2017. 17 GB/T 228. 1-2010. Metallic materials-tensile testing-part 1:method of test at room temperature, Standardization Administration of the P. R. C, China, 2010(in Chinese). GB/T 228. 1-2010. 金属材料 拉伸试验第1部分:室温试验方法. 中华人民共和国标准化管理委员会, 2010. 18 Jiang D C, Liu B J, Han S Z. Engineering marine environment, Ocean Press, China, 2005(in Chinese). 蒋德才, 刘百桥, 韩树宗. 工程环境海洋学, 海洋出版社, 2005. 19 Xu Y L. Ship & Boat, 2016, 27(5), 44(in Chinese). 许蕴蕾. 船舶, 2016, 27(5), 44. 20 Gao X D, Shao Y B, Xie L Y, et al. Materials Reports, 2020, 34(2), 2123(in Chinese). 高旭东, 邵永波, 谢丽媛, 等. 材料导报, 2020, 34(2), 2123. 21 Adedipe O, Brennan F, Kolios A. Marine Structures, 2015, 42, 115. 22 Chen L, Huang T L, Zhou H. Engineering Mechanics, 2021, 38(10), 238(in Chinese). 陈龙, 黄天立, 周浩. 工程力学, 2021, 38(10), 238. 23 Ahn S, Jeong D, Kwon Y, et al. International Journal of Fatigue, 2018, 111, 186. 24 Teng K, Liang Z G, Shi S X, et al. China Metallurgy, 2021, 31(12), 102(in Chinese). 滕奎, 梁治国, 石松鑫, 等. 中国冶金, 2021, 31(12), 102. 25 Zhong Q P, Zhao Z H. Fractography, Higher Education Press, China, 2006(in Chinese). 钟群鹏, 赵子华. 断口学, 高等教育出版社, 2006.