Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22050330-7    https://doi.org/10.11896/cldb.22050330
  金属与金属基复合材料 |
应力比对EH36钢在海洋腐蚀环境中疲劳裂纹扩展速率的影响
钟颖1, 邵永波1,*, 高旭东2, 罗霞飞2, 朱红梅2, 杨冬平3
1 西南石油大学土木工程与测绘学院,成都 610500
2 西南石油大学机电工程学院,成都 610500
3 中国石化胜利油田技术检测中心,山东 东营 257062
Effect of Stress Ratio on Fatigue Crack Growth Rate of EH36 Steel in the Marine Corrosive Environment
ZHONG Ying1, SHAO Yongbo1,*, GAO Xudong2, LUO Xiafei2, ZHU Hongmei2, YANG Dongping3
1 School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu 610500, China
2 School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
3 Technology Inspection Center, China Petroleum & Chemical Corporation, Dongying 257062, Shandong, China
下载:  全 文 ( PDF ) ( 21428KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 EH36钢因强度高、低温韧性好、自重较轻等性能优势而被广泛应用于大型海洋平台。为评估在海洋腐蚀环境中改变应力比对EH36钢腐蚀疲劳性能的影响,采用三级应力比(R=0.1、0.3、0.5)分别开展了空气环境、海水全浸环境和海水浪溅环境中EH36钢的疲劳裂纹扩展试验。在同一应力强度因子幅值(ΔK)下,EH36钢在三种环境中均表现出应力比R升高对疲劳裂纹扩展速率da/dN的加速作用。空气环境中应力比对裂纹扩展速率会产生较大影响,对材料常数C和m影响很小,但在海水全浸环境和海水浪溅环境中,应力比增大不仅促进了裂纹扩展,而且使材料常数C和m发生变化。载荷条件相同时,海水全浸环境和海水浪溅环境中的裂纹扩展速率明显大于空气环境中的裂纹扩展速率,两种腐蚀环境对疲劳裂纹扩展行为的作用效果基本一致。通过观察断口形貌发现空气中的试件断口形貌表现为准解理特征,海水全浸环境和海水浪溅环境中的CT试件断口形貌大致相同,更接近于解理断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟颖
邵永波
高旭东
罗霞飞
朱红梅
杨冬平
关键词:  EH36钢  海水浪溅环境  应力比  疲劳裂纹扩展速率  断口形貌    
Abstract: EH36 steel is widely used in large offshore platforms due to its high strength, excellent toughness at low temperature and light weight. To eva-luate the influence of stress ratio on the corrosion fatigue performance of EH36 steel in the marine corrosive environment, the fatigue crack growth tests of EH36 steel were carried out in laboratory air, seawater environment and splashing environment at three different stress ratios (R=0.1, 0.3, 0.5), respectively. It is concluded that the fatigue crack growth rate of EH36 steel was accelerated by increasing stress ratio R in all three environments for a given value of the stress intensity factor range (ΔK). The stress ratio R has great influence on the crack growth rate in air, but has little effect on the material constants C and m. Increasing the stress ratio in the seawater and splashing environment promotes crack growth and changes the material constants C and m as well. It is evident that the crack growth rates in seawater and splashing environment are higher than those in the air under the same loading conditions, and the effects of both corrosion environments have almost identical effects on fatigue crack growth behavior. The fracture morphology of the specimens in the air environment shows quasi-cleavage fracture characteristics. It is almost the same fracture morphology in both corrosion environments, which is close to cleavage fracture.
Key words:  EH36 steel    seawater splash environment    stress ratio    fatigue crack growth rate    fracture morphology
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TG172.5  
基金资助: 国家自然科学基金(52078441)
通讯作者:  *邵永波,教授,博士研究生导师。本科和硕士研究生毕业于清华大学工程力学系,博士毕业于新加坡南洋理工大学。一直从事结构工程、海洋工程钢结构和机械强度理论方面的教学科研工作。专注于钢结构疲劳断裂、抗震、抗火、抗冲击性能及结构安全评估和加固方面的研究。承担国家自然科学基金、四川省青年科技创新研究团队等省部级项目和企业委托项目20余项。发表学术论文160余篇,参编行业标准3部。 ybshao@swpu.edu.cn   
作者简介:  钟颖,2016年毕业于新余学院,获得学士学位。2020年9月至今在西南石油大学土木工程与测绘学院攻读硕士学位,在邵永波教授的指导下进行研究。目前主要研究领域为疲劳与断裂。
引用本文:    
钟颖, 邵永波, 高旭东, 罗霞飞, 朱红梅, 杨冬平. 应力比对EH36钢在海洋腐蚀环境中疲劳裂纹扩展速率的影响[J]. 材料导报, 2023, 37(19): 22050330-7.
ZHONG Ying, SHAO Yongbo, GAO Xudong, LUO Xiafei, ZHU Hongmei, YANG Dongping. Effect of Stress Ratio on Fatigue Crack Growth Rate of EH36 Steel in the Marine Corrosive Environment. Materials Reports, 2023, 37(19): 22050330-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050330  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22050330
1 Zhu Q, Zhang P, Peng X, et al. Materials, 2021, 14(21), 6621.
2 Wahab M A, Sakano M. Journal of Materials Processing Technology, 2001, 118(1-3), 116.
3 Jia Z, Yang Y, He Z, et al. Applied Ocean Research, 2019, 93, 101942.
4 Su M, Xu L, Peng C, et al. International Journal of Fatigue, 2022, 156, 106689.
5 Hong B, Huang Y, Wu Z M. Journal of Water Resources and Architectural Engineering, 2015, 13(5), 136(in Chinese).
洪波, 黄一, 吴智敏. 水利与建筑工程学报, 2015, 13(5), 136.
6 Cheng Y W. International Journal of Fatigue, 1985, 7(2), 95.
7 Weng L, Zhang J, Kalnaus S, et al. International Journal of Fatigue, 2013, 48, 156.
8 Hao W, Liu Z, Wu W, et al. Materials Science and Engineering:A, 2018, 710, 318.
9 Zhang S F, Zeng W D, Long Y, et al. Rare Metal Materials and Engineering, 2018, 47(12), 3741(in Chinese).
张赛飞, 曾卫东, 龙雨, 等. 稀有金属材料与工程, 2018, 47(12), 3741.
10 Guo H C, Wei H C, Yang D X, et al. China Civil Engineering Journal, 2021, 54(5), 10(in Chinese).
郭宏超, 魏欢欢, 杨迪雄, 等. 土木工程学报, 2021, 54(5), 10.
11 Wang K, Wu L, Li Y, et al. Ocean Engineering, 2020, 216, 107789.
12 Li Z Y, Wang G, Luo S W, et al. Journal of Chinese Society for Corrosion and Protection, 2020, 40(5), 463(in Chinese).
李子运, 王贵, 罗思维, 等. 中国腐蚀与防护学报, 2020, 40(5), 463.
13 Barbosa L H S, Modenesi P J, Godefroid L B, et al. International Journal of Fatigue, 2019, 119, 43.
14 Wang J, Zhang M, Tan X, et al. Materials Science and Engineering:A, 2020, 777, 139049.
15 Wu H B, Liang G L, Tang D. Transactions of the China Welding Institution, 2012, 33(2), 57(in Chinese).
武会宾, 梁国俐, 唐荻. 焊接学报, 2012, 33(2), 57.
16 GB/T 6398-20017. Metallic materials-fatigue testing-fatigue crack growth method. Standardization Administration of the P. R. C, China, 2017(in Chinese).
GB/T 6398-2017. 金属材料疲劳裂纹扩展速率试验方法. 中华人民共和国标准化管理委员会, 2017.
17 GB/T 228. 1-2010. Metallic materials-tensile testing-part 1:method of test at room temperature, Standardization Administration of the P. R. C, China, 2010(in Chinese).
GB/T 228. 1-2010. 金属材料 拉伸试验第1部分:室温试验方法. 中华人民共和国标准化管理委员会, 2010.
18 Jiang D C, Liu B J, Han S Z. Engineering marine environment, Ocean Press, China, 2005(in Chinese).
蒋德才, 刘百桥, 韩树宗. 工程环境海洋学, 海洋出版社, 2005.
19 Xu Y L. Ship & Boat, 2016, 27(5), 44(in Chinese).
许蕴蕾. 船舶, 2016, 27(5), 44.
20 Gao X D, Shao Y B, Xie L Y, et al. Materials Reports, 2020, 34(2), 2123(in Chinese).
高旭东, 邵永波, 谢丽媛, 等. 材料导报, 2020, 34(2), 2123.
21 Adedipe O, Brennan F, Kolios A. Marine Structures, 2015, 42, 115.
22 Chen L, Huang T L, Zhou H. Engineering Mechanics, 2021, 38(10), 238(in Chinese).
陈龙, 黄天立, 周浩. 工程力学, 2021, 38(10), 238.
23 Ahn S, Jeong D, Kwon Y, et al. International Journal of Fatigue, 2018, 111, 186.
24 Teng K, Liang Z G, Shi S X, et al. China Metallurgy, 2021, 31(12), 102(in Chinese).
滕奎, 梁治国, 石松鑫, 等. 中国冶金, 2021, 31(12), 102.
25 Zhong Q P, Zhao Z H. Fractography, Higher Education Press, China, 2006(in Chinese).
钟群鹏, 赵子华. 断口学, 高等教育出版社, 2006.
[1] 孙冠泽, 曹睿, 周鑫, 王红卫. TNM-TiAl合金室温高周疲劳性能研究[J]. 材料导报, 2023, 37(12): 21090297-7.
[2] 高旭东, 邵永波, 郭永健, 钟颖, 罗霞飞. 应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响[J]. 材料导报, 2022, 36(15): 21040303-6.
[3] 丁文有, 何晓聪, 刘佳沐, 刘洋. 预腐蚀对夹层结构自冲铆接头疲劳特性的影响[J]. 材料导报, 2019, 33(18): 3089-3095.
[4] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed