Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22050264-6    https://doi.org/10.11896/cldb.22050264
  无机非金属及其复合材料 |
基于改性剂调控517相改善碱式硫酸镁水泥耐水性能
朱倍1,2, 徐迅1,3,*, 胡海龙4, 余波5,6, 朱妍2, 甘露1
1 西南科技大学土木工程与建筑学院,四川 绵阳 621010
2 西南科技大学材料与化学学院,四川 绵阳 621010
3 广西大学广西防灾减灾与工程安全重点实验室,南宁 530001
4 西南科技大学分析测试中心,四川 绵阳 621010
5 广西大学土木建筑工程学院,南宁 530001
6 广西大学工程防灾与结构安全教育部重点实验室,南宁 530001
Improvement of Water Resistance of Basic Magnesium Sulfate Cement Based on Modification of 517 Phase by Modifiers
ZHU Bei1,2, XU Xun1,3,*, HU Hailong4, YU Bo5,6, ZHU Yan2, GAN Lu1
1 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
3 Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530001, China
4 Southwest University of Science and Technology Analytical Testing Center, Mianyang 621010, Sichuan, China
5 School of Civil Engineering and Construction, Guangxi University, Nanning 530001, China
6 Key Laboratory of Ministry of Education for Engineering Disaster Prevention and Structural Safety, Guangxi University, Nanning 530001, China
下载:  全 文 ( PDF ) ( 22548KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现有研究表明不同改性剂对碱式硫酸镁水泥(BMSC)中517相的生长有影响。本工作使用六种不同羟基含量的改性剂,借助X射线衍射仪、扫描电子显微镜、拉曼光谱仪和压汞仪研究了改性剂相同质量掺量下BMSC的力学强度、物相组成和微观结构。实验结果表明,添加富羟基的磷酸二氢钠和磷酸二氢钾试样中517相含量最高,长径比最大,抗压强度较对照组提升近一倍,软化系数接近1.00;BMSC中孔隙主要为晶间孔,长径比大的517相使孔径分布更集中、总孔隙率更低。BMSC耐水性能与517相含量、形貌有关,使用富羟基的改性剂能促进517相的结晶生成,从而提高517相含量及其长径比,改善其耐水性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱倍
徐迅
胡海龙
余波
朱妍
甘露
关键词:  碱式硫酸镁水泥  改性剂  水化产物  微观结构  耐水性能    
Abstract: Recent studies have shown the effect of different modifiers on the growth of endogenous 517 phase ofbasic magnesium sulfate cement (BMSC). In this work, the mechanical strength, phase composition and microstructure of BMSC with the same modifier admixture were investigated using six modifiers with different hydroxyl content with the help of X-ray diffractometer, scanning electron microscope, Raman spectrometer and mercury piezometer. The results show that the 517 phase content is the highest and the aspect ratio is the largest in the specimen with high hydroxyl content of sodium dihydrogen phosphate and potassium dihydrogen phosphate. The compressive strength is nearly doubled compared with that without addition, and the softening coefficient are close to 1.00. The pores in BMSC are mainly intergranular pores, and the 517 phase with large aspect ratio let to more concentrated pore size distribution and lower total porosity. The water resistance of BMSC is related to the content and morphology of 517 phase, and the use of hydroxyl-rich modifier can promote the crystallization of 517 phase, thus increasing the content of 517 phase and its aspect ratio to improve water resistance.
Key words:  basic magnesium sulfate cement    modifier    hydration products    microstructure    water resistance
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TQ177.5  
基金资助: 四川省重点研发计划(2023YFSY0019);广西防灾减灾与工程安全重点实验室开放课题项目(2020ZDK006);西南科技大学实验技术研究项目(21syjs-32);广西壮族自治区杰出青年科学基金(2019GXNSFFA245004);广西壮族自治区自然科学基金(2018GXNSFAA281344)
通讯作者:  *徐迅,西南科技大学副研究员、博士研究生导师,2018年中国建筑材料科学研究总院材料学专业博士毕业。长期从事水泥工业节能减排及协同处置废弃物、超高性能混凝土及制品、新型镁质胶凝材料及保温建材、固体废弃物建材资源化等方向的研究工作。发表论文80多篇,其中SCI收录9篇,EI收录2篇;获得5项发明专利、8项实用新型专利。15550045@qq.com   
作者简介:  朱倍,2020年6月于西南科技大学获得工学学士学位。现为西南科技大学材料与化学学院硕士研究生,在徐迅副研究员的指导下进行研究。目前主要研究领域为新型镁质胶凝材料及保温建材。
引用本文:    
朱倍, 徐迅, 胡海龙, 余波, 朱妍, 甘露. 基于改性剂调控517相改善碱式硫酸镁水泥耐水性能[J]. 材料导报, 2023, 37(19): 22050264-6.
ZHU Bei, XU Xun, HU Hailong, YU Bo, ZHU Yan, GAN Lu. Improvement of Water Resistance of Basic Magnesium Sulfate Cement Based on Modification of 517 Phase by Modifiers. Materials Reports, 2023, 37(19): 22050264-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050264  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22050264
1 Wu C Y. Basic study of magnesium hydroxide sulfate hydrate whisker-reinforced magnesium silicate hydrate cement. Ph. D. Thesis, University of Chinese Academy of Sciences, China, 2014 (in Chinese).
吴成友. 碱式硫酸镁水泥的基本理论及其在土木工程中的应用技术研究. 博士学位论文, 中国科学院大学, 2014.
2 Wang R, Qin L, Gao X. Cement and Concrete Composites, 2020, 109, 103554.
3 Zeng X, Yu H F. Structural Concrete, 2020, 1, 1.
4 Wang N, Yu H F, Wan L, et al. Construction and Building Materials, 2018, 169, 697.
5 Wu C Y, Yu H F, Hui F, et al. Materials & Structures, 2015, 48(4), 907.
6 Wang A G, Chu Y J, Xu H Y, et al. Materials Reports, 2020, 34(13), 13091 (in Chinese).
王爱国, 楚英杰, 徐海燕, 等. 材料导报, 2020, 34(13), 13091.
7 Wu C Y, Miao M, Yu H F. Journal of Building Materials, 2022, 25(4), 360 (in Chinese).
吴成友, 苗梦, 余红发. 建筑材料学报, 2022, 25(4), 360.
8 Ba M F, Qi G, Ma Y L, et al. Construction and Building Materials, 2020, 267, 120988.
9 Tan Y S, Yu H F, Sun S K, et al. Construction and Building Materials, 2021, 266, 121076.
10 Xu X, Hu Z Y, Duan L L, et al. Journal of Environmental Management, 2020, 256, 109878.
11 Song W. Qinghai Traffic Technology, 2021, 33(1), 145 (in Chinese).
宋维. 青海交通科技, 2021, 33(1), 145.
12 Wang R, Qin L, Gao X. Cement and Concrete Composites, 2020, 109, 103554.
13 Zhang Y P, Xue D F. Chinese Journal of Applied Chemistry, 2020, 37(7), 823 (in Chinese).
张艳平, 薛冬峰. 应用化学, 2020, 37(7), 823.
14 Runevski T, Wu C Y, Yu H F, et al. Journal of the American Ceramic Society, 2013, 96(11), 3609.
15 Xu X, Li Y J, Yu B, et al. Journal of Building Engineering, 2022, 50, 104142.
16 Guo T, Wang H, Yang H, et al. Construction and Building Materials, 2017, 150, 844.
17 Gu Q C. Chemistry table, Jiangsu, Phoenix Science Press, China, 1979, pp. 256 (in Chinese).
顾庆超. 化学用表, 江苏科学技术出版社, 1979, pp. 256.
18 Xiang L, Jin Y C, Jin Y. Journal of Inorganic Materials, 2003, (8), 837 (in Chinese).
向兰, 金永成, 金涌. 无机化学学报, 2003, (8), 837.
[1] 吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 罗彪, 罗正东, 任辉启, 郭瑞奇. 速凝剂对低水胶比浆体早期水化与微观结构的影响[J]. 材料导报, 2023, 37(9): 21080253-7.
[4] 廖宜顺, 王思纯, 廖国胜, 梅军鹏, 陈迎雪. 葡萄糖酸钠对硫铝酸盐水泥水化历程的影响[J]. 材料导报, 2023, 37(9): 21100182-6.
[5] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[6] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[7] 韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
[8] 朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
[9] 韩风雷, 刘艳, 刘涛, 张学富, 吕洋, 扎西尼玛. SiO2气凝胶对超细水泥基材料性能影响的试验研究[J]. 材料导报, 2023, 37(15): 22080137-7.
[10] 霍彬彬, 陈春, 张亚梅. 磷酸改性钢渣粉复合氢氧化钙浆体早期水化与微观结构[J]. 材料导报, 2023, 37(15): 21100115-5.
[11] 陆万全, 乔及森, 王磊, 刘永涛, 冯睿, 祝伟. 960高强钢脉冲TIG电弧增材制造热过程及组织与力学性能研究[J]. 材料导报, 2023, 37(14): 21110135-7.
[12] 王雷, 王文恒, 廖明义. 二元嵌段丁苯橡胶的合成及动态力学性能的研究[J]. 材料导报, 2023, 37(14): 21120152-5.
[13] 龙武剑, 吴卓锐, 韦经杰, 董必钦, 张津瑞, 方长乐. 有机膦酸盐对碱矿渣胶凝材料铅离子固化性能的提升作用[J]. 材料导报, 2023, 37(13): 21110095-8.
[14] 樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
[15] 尹升华, 曹永, 吴爱祥, 侯永强, 白龙剑. 玻璃纤维增强含硫尾砂胶结充填体的力学及流动性能研究[J]. 材料导报, 2023, 37(13): 21110083-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed