Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23020053-5    https://doi.org/10.11896/cldb.23020053
  无机非金属及其复合材料 |
沥青宏观性能与微观化学组成关系的研究进展
吴偲*, 范思远, 王兆程, 韩照明
中石化(大连)石油化工研究院有限公司,辽宁 大连 116045
Research Progress on the Relationship Between Macroscopic Properties and Microscopic Chemical Composition of Asphalt
WU Cai*, FAN Siyuan, WANG Zhaocheng, HAN Zhaoming
SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, Liaoning, China
下载:  全 文 ( PDF ) ( 9663KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青的性能是路面设计时选择合适沥青的重要考虑因素,而其宏观性能又与化学成分和微观结构密切相关,因此研究沥青性能与化学特性之间的关系一直是科研人员关注的热点问题。本文回顾了近年来关于沥青宏观性能与微观化学组成之间的研究,介绍了沥青的化学组成、分子间相互作用以及微观结构模型,梳理了沥青性能与化学组成之间的定性关系研究和数学关系模型,分析了沥青的族组成、极性、杂原子含量、特征官能团、分子量和芳香性等对沥青性能的影响,并对未来的发展方向及科研热点进行了展望。这项工作可为沥青的基因组学、改性升级、循环再生和性能预测等提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴偲
范思远
王兆程
韩照明
关键词:  沥青  化学组成  分子间相互作用  微观结构模型  数学关系模型    
Abstract: The macroscopic properties of asphalt are closely related to its chemical composition and microstructure, which is an important consideration for selecting the proper asphalt when designing a pavement. The research on the correlation between asphalt properties and chemical characteristic has always been a hot topic for researchers. In this paper, we summarize the recent research on the relationship between the macroscopic properties and the microscopic chemical composition of asphalt, and introduce about the chemical composition, molecular interaction, the microscopic structure model, the qualitative relationship studies and mathematical relationship models between the properties and the chemical composition of asphalt. Furthermore, the effects of fraction composition, polarity, heteroatomic content, characteristic functional groups, molecular weight and aromaticity on asphalt properties are analyzed. Finally, we prospect the future development direction and research hotspot of the field. This work provides a reference for the research of asphalt genomics, modification and upgrading, recycling and performance prediction.
Key words:  asphalt    chemical composition    intermolecular interaction    microstructure model    mathematical relational model
发布日期:  2023-09-06
ZTFLH:  U414  
  TE626  
基金资助: 中国石化重点科技项目(121024-1)
通讯作者:  *吴偲,2017年6月、2020年6月于北京化工大学分别获得工学学士学位和硕士学位。现为中石化(大连)石油化工研究院有限公司助理工程师。目前主要研究领域为沥青产品研发与分析。wucai.fshy@sinopec.com   
引用本文:    
吴偲, 范思远, 王兆程, 韩照明. 沥青宏观性能与微观化学组成关系的研究进展[J]. 材料导报, 2023, 37(S1): 23020053-5.
WU Cai, FAN Siyuan, WANG Zhaocheng, HAN Zhaoming. Research Progress on the Relationship Between Macroscopic Properties and Microscopic Chemical Composition of Asphalt. Materials Reports, 2023, 37(S1): 23020053-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020053  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23020053
1 Wang C H. Petroleum Refining and Chemical Industry, 2019, 50(2), 36 (in Chinese).
王翠红. 石油炼制与化工, 2019, 50(2), 36.
2 Roopashree M S, Singh D, Showkat B. Construction and Building Materials, 2020, 258(3), 120338.
3 Hou X, Lv S, Chen Z, et al. Measurement, 2018, 121, 304.
4 Ma J, Sun G, Sun D, et al. Construction and Building Materials, 2021, 278, 122386.
5 Qian S A, Li C F, Zhang P Z. Fuel, 1984, 63(2), 268.
6 Dickie J P, Yen T F. Analytical Chemistry, 1967, 39(14), 1847.
7 Shan L, Xie R, Wanger N J, et al. Fuel, 2019, 253, 1589.
8 Zhang E, Shan L, Qi X, et al. Construction and Building Materials, 2022, 343, 128001.
9 Lesueur D. Advances in Colloid & Interface Science, 2009, 145(1-2), 42.
10 Yun B, Sui H, Liu X, et al. Fuel, 2019, 240, 252.
11 Silva H S, Sodero A C R, Bouyssiere B, et al. Energy & Fuels, 2016, 30(7), 5656.
12 Green J B, Yu S K T, Pearson C D, et al. Energy & Fuels, 1993, 7(1), 119.
13 Tauste R, Moreno-Navarro F, Sol-Sánchez M, et al. Construction and Building Materials, 2018, 192, 593.
14 Santos R G, Loh W, Bannwart A C, et al. Brazilian Journal of Chemical Engineering, 2014, 31(3), 571.
15 Petersen J C, RobertsonR E, Branthaver J F, et al. Binder characterization and evaluation: Volume 1. No. SHRP-A-367, National Research Council, Washington DC, 1994.
16 Wang Y, Wang W, Wang L. Construction and Building Materials, 2022, 329, 127161.
17 Boussingault J. Comptes Rendus de l'Académie des Sciences, 1836, 3, 375.
18 Richardson C. The modern asphalt pavement, John Wiley and Sons, New York, 1905.
19 Corbett L W. Analytical Chemistry, 1969, 41(4), 576.
20 Zhang M, Hao P, Dong S, et al. Measurement, 2019, 151, 107255.
21 Guo M, Liang M, Fu Y, et al. Materials and Structures, 2021, 54(4), 1.
22 Zhou X L, Chen S Z, Chang K Y. Journal of East China University of Science and Technology: Natural Science Edition, 1995, 21(6), 649 (in Chinese).
周晓龙, 陈绍洲, 常可怡. 华东理工大学学报:自然科学版, 1995, 21(6), 649.
23 Feng Z G, Zhang J B, Li X J, et al. Chromatography, 2015, 33(2), 195 (in Chinese).
冯振刚, 张建宾, 李新军, 等. 色谱, 2015, 33(2), 195.
24 Bisht H, Reddy M, Malvanker M, et al. Energy & Fuels, 2013, 27(6), 3006.
25 Zhang C M, Li A Y, Shen Z M, et al. Analytical Chemistry, 1986, 14(3), 161 (in Chinese).
张昌鸣, 李爱英, 沈曾民, 等. 分析化学, 1986, 14(3), 161.
26 Liang H, Tian S B, Zhu X Y, et al. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(4), 634 (in Chinese).
梁欢, 田松柏, 祝馨怡, 等. 石油学报(石油加工), 2011, 27(4), 634.
27 Redelius P. Road Materials and Pavement Design, 2009, 10, 25.
28 Riazi M R, Roomi Y A. Industrial & Engineering Chemistry Research, 2001, 40(8), 1975.
29 Wanger J P, Schreiner P R. Angewandte Chemie International Edition, 2015, 54(42), 12274.
30 Hunter C A, Sanders J K M. Journal of the American Chemical Society, 1990, 112(14), 5525.
31 Grimme S. Angewandte Chemie International Edition, 2008, 47(18), 3430.
32 Redelius P, Soenen H. Fuel, 2015, 140(15), 34.
33 Redelius P, Soenen H. Road Materials and Pavement Design, 2005, 6(3), 385.
34 Yen T F. Energy Sources, 1974, 1(4), 447.
35 Strausz O P, Mojelsky T W, Lown E M. Fuel, 1992, 71(12), 1355.
36 Eyssautier J, Levitz P, Espinat D, et al. Journal of Physical Chemistry B, 2011, 115(21), 6827.
37 Rosinger V A. Kolloid-Zeitschrift, 1914, 15(5), 177.
38 Nellensteyn F J. Journal of Petroleum Technology, 1924, 10, 311.
39 Mack C. The Journal of Physical Chemistry, 2002, 36(12), 2901.
40 Pfeiffer J P, Saal R N J. The Journal of Physical Chemistry, 1940, 44(2), 139.
41 Saal R N J, Labout J W A. The Journal of Physical Chemistry, 1940, 44(2), 149.
42 Broome D C. Nature, 1964, 202(4934), 739.
43 Gaestel C, Smadia R, Lamminan K A. Revue Générale des Routes et des Aérodromes, 1971, 466, 85.
44 Oyekunle L O. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 2006, 61(3), 433.
45 Yen T F. Fuel Science & Technology International, 1992, 10(4-6), 723.
46 Yen T F. In: Pan-Pacific Synfuels Conference. Tokyo, 1982, pp.547.
47 Mullins O C. Energy & Fuels, 2010, 24(4), 2179.
48 Barre L, Espinat D, Rosenberg E, et al. Oil & Gas Science & Technology, 1997, 52(2), 161.
49 Barre L, Jestin J, Morisset A, et al. Oil & Gas Science & Technology, 2009, 64(5), 617.
50 Tan Y Q, Li G N, Shan L Y, et al. Journal of Traffic and Transportation Engineering, 2020, 20(6), 1 (in Chinese).
谭忆秋, 李冠男, 单丽岩, 等. 交通运输工程学报, 2020, 20(6), 1.
51 Redelius P. Hansen solubility parameters: a user's handbook, 2007, pp.151.
52 Redelius P. Fuel, 2000, 79(1), 27.
53 Redelius P. Energy & Fuels, 2004, 18(4), 1087.
54 O'Donnell G, Snider L T, Rietz E G. Analytical Chemistry, 1951, 23(6), 894.
55 Simpson W C, Griffin R L, Miles T K. Journal of Chemical and Engineering Data, 1961, 6(3), 426.
56 Chen H X, He M S, Ji X H, et al. Journal of Chang'an University: Natural Science Edition, 2014, 34(3), 1 (in Chinese).
陈华鑫, 贺孟霜, 纪鑫和, 等. 长安大学学报:自然科学版, 2014, 34(3), 1.
57 Dealy J M. The Canadian Journal of Chemical Engineering, 1979, 57(6), 677.
58 Christensen R J, Lindberg W R, Dorrence S M. Fuel, 1984, 63(9), 1312.
59 Zenke G. Bitumen, 1977, 6, 175.
60 Weigel S, Stephan D. Road Materials and Pavement Design, 2018, 19(7), 1636.
61 Luo P, Gu Y. Fuel, 2007, 86(7-8), 1069.
62 Robertson R E. Chemical properties of asphalts and their relationship to pavement performance, National Research Council, Washington DC, 1991.
63 Michalica P, Kazatchkov I B, Stastna J, et al. Fuel, 2008, 87(15-16), 3247.
64 Sultana S, BhasinA. Construction and Building Materials, 2014, 72, 293.
65 Bukka K, Miller J D, Oblad A G. Energy & Fuels, 1991, 5(2), 333.
66 Bukka K, Miller J D, Hanson F V, et al. Fuel, 1994, 73(2), 257.
67 Pauli A T, Huang S C. International Journal of Pavement Research and Technology, 2013, 6(1), 1.
68 Maharaj R. International Journal of Applied Chemistry, 2009, 5(3), 169.
69 Branthaver J F, Petersen J C, Robertson R E, et al. SHRP-A-368 Binder characterization and evaluation: vol. 2—chemistry, National Research Council, Washington DC, 1993.
70 Salehfard R, Behbahani H, Dalmazzo D, et al. Construction and Buil-ding Materials, 2021, 281, 122563.
71 Kang J Q. Study on correlation between chemical structure and macroscopic properties of asphalt. Master's Thesis, China University of Petroleum (East China), 2015 (in Chinese).
康剑翘. 沥青化学组成结构与宏观性质关联关系研究. 硕士学位论文, 中国石油大学(华东), 2015.
72 Wang J, Wang T, Hou X, et al. Fuel, 2019, 238, 320.
73 Wang T, Wang J, Hou X, et al. Road Materials and Pavement Design, 2021, 22(3), 539.
74 Kim K W, Burati J L, Park J S. Journal of Materials in Civil Engineering, 1995, 7(1), 31.
75 Lu X, Isacsson U. Construction and Building Materials, 2002, 16(1), 15.
76 Stangl K. Linking chemical and physical characteristics with mechanical performance of bitumen, TU Wien, 2010.
77 Weigel S, Stephan D. Materials and Structures, 2017, 50(1), 1.
78 Zhao K C, Wang Y H, Yang Z. Journal of Highway and Transportation Science and Technology, 2021, 38(5), 10 (in Chinese).
赵可成, 王予红, 杨震. 公路交通科技, 2021, 38(5), 10.
[1] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[2] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[3] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[4] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[5] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[6] 罗蓉, 王伟, 罗晶, 习磊. 多尺度评价相对湿度对沥青-集料黏附性的影响[J]. 材料导报, 2023, 37(2): 21060216-6.
[7] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[8] 郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
[9] 宋卫民, 吴昊. 基于断裂力学的沥青混凝土抗裂性能与研究方法进展[J]. 材料导报, 2023, 37(16): 22050119-11.
[10] 王言磊, 陆军, 梁鹏飞, 罗婷, 颜川奇. 不同温拌剂对高黏沥青流变及微观特性影响研究[J]. 材料导报, 2023, 37(16): 22010171-6.
[11] 褚召阳, 郭乃胜, 房辰泽, 谭忆秋, 尤占平. 氯盐环境下沥青与沥青混合料性能及劣化机理研究进展[J]. 材料导报, 2023, 37(15): 21110001-9.
[12] 徐宁,汪海年, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 21110097-8.
[13] 殷鹏, 潘宝峰, 康泽华, 王宝民. 稻壳灰改性沥青混合料性能研究及路面结构动力响应分析[J]. 材料导报, 2023, 37(14): 21120046-8.
[14] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[15] 冯云霞, 罗钰鸿, 牛开民, 郭鹏. 盐及环境耦合作用下沥青和混合料性能劣化规律及机理研究进展[J]. 材料导报, 2023, 37(13): 22050114-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed