Please wait a minute...
材料导报  2023, Vol. 37 Issue (5): 21080176-6    https://doi.org/10.11896/cldb.21080176
  高分子与聚合物基复合材料 |
聚乙烯与沥青相互作用的分子动力学机理研究
栗启1,2,3, 胡魁1,2,3,*, 俞才华4, 张桃利1,2,3, 王丹丹5
1 河南工业大学土木工程学院,郑州 450001
2 河南省粮油仓储建筑与安全重点实验室,郑州 450001
3 河南省现代绿色生态仓储体系国际联合实验室,郑州 450001
4 同济大学土木工程学院,上海 200092
5 中国矿业大学(北京)力学与建筑工程学院,北京 102206
Molecular Dynamics Mechanism Study of the Interaction Between Polyethylene and Asphalt
LI Qi1,2,3, HU Kui1,2,3,*, YU Caihua4, ZHANG Taoli1,2,3, WANG Dandan5
1 College of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
2 Henan Key Laboratory of Grain Storage Facility and Safety, Zhengzhou 450001, China
3 Henan International Joint Laboratory of Modern Green Ecological Storage System, Zhengzhou 450001, China
4 College of Civil Engineering, Tongji University, Shanghai 200092, China
5 School of Mechanics and Civil Engineering, China University of Mining & Technology-Beijing, Beijing 102206, China
下载:  全 文 ( PDF ) ( 17900KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乙烯改性沥青的相互作用研究对开发塑料回收颗粒在路用沥青中的应用具有重要价值。采用分子动力学模拟方法探究聚乙烯与沥青在分子尺度的相互作用,构建沥青组分模型,采用结合能、扩散系数和相对浓度分布探究聚乙烯与沥青的相互作用机制。结果表明,聚乙烯与轻质组分(饱和分和芳香分)的结合能强于重质组分(沥青质和胶质),说明聚乙烯与轻质组分具有更好的相容性。然而,聚乙烯与沥青四组分的结合能都小于460 443.7 J/mol,说明聚乙烯与沥青组分的相容性普遍偏低,这可能是聚乙烯改性沥青存在微观两相分离问题的原因。聚乙烯的加入导致沥青分子的扩散系数降低(最大0.02×10-8 m2·s-1),这是聚乙烯压缩沥青分子的运动空间所致。此外,浓度分布结果表明,聚乙烯在吸附沥青轻质组分的同时,可破坏沥青原有的胶体体系稳定性。研究结果可为高性能聚乙烯改性沥青材料的开发设计提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
栗启
胡魁
俞才华
张桃利
王丹丹
关键词:  聚乙烯改性沥青  分子动力学  吸附扩散  相互作用机理    
Abstract: The interaction study of polyethylene modified asphalt has an important research value for the development of plastic recycled granules for road asphalt applications. In this work, molecular dynamics simulation was used to investigate the interaction between polyethylene and asphalt at the molecular scale, and a model of asphalt fraction was constructed to investigate the interaction mechanism between polyethylene and asphalt by using binding energy, diffusion coefficient and relative concentration distribution. The results show that the binding energy of polyethylene with light components(saturate and aromatic)is stronger than that of heavy components(asphaltene and resin), indicating that polyethylene has better compatibility with light components. However, the binding energy of polyethylene with all four asphalt components is less than 460 443.7 J/mol, which indicates that the compatibility of polyethylene with asphalt components is generally low, and this is the possible reason for the microscopic two-phase separation problem of polyethylene modified asphalt. The addition of polyethylene leads to the decrease of the diffusion coefficient of asphalt molecules(maximum 0.02×10-8 m2·s-1), which is caused by the compression of the movement space of asphalt molecules by polyethylene. In addition, the concentration distribution results show that polyethylene adsorbs the lighter components of asphalt while destabilizing the original colloidal system of asphalt. The results of the study can provide theoretical reference for the development and design of high-performance polyethylene modified asphalt materials.
Key words:  polyethylene modified asphalt    molecular dynamics    adsorption and diffusion    interactions mechanism
出版日期:  2023-03-10      发布日期:  2023-03-14
ZTFLH:  U414  
基金资助: 中央公益性科研院所基础研究基金(2020-9049);河南省自然科学基金项目(222300420142);河南省博士后基金资助项目;河南省科技计划项目(192102310229);中国博士后科学基金面上资助(2022M711079);河南工业大学青年骨干教师计划(21420156)
通讯作者:  *胡魁,河南工业大学副教授、硕士研究生导师。2009年于河南科技大学无机非金属材料专业本科毕业,2013年于长安大学材料学专业硕士毕业,2014—2015年在美国弗吉尼亚理工大学进行联合培养,2017年于长安大学道路与铁道工程专业博士毕业后到河南工业大学工作至今。目前主要从事路用沥青材料微细观结构表征、建筑固废路用资源化等方面的研究工作。发表论文40余篇,包括Materials and Design、Waste Management、Construction and Building Materials、Polymers、Coatings、Journal of Zhejiang University-Science A、Molecular Simulation 等。mailhukui@haut.edu.cn   
作者简介:  栗启,2020年7月于洛阳理工学院取得工学学士学位,现为河南工业大学土木工程学院硕士研究生,在胡魁老师的指导下进行研究。目前主要研究方向为路用沥青微细观结构形态形成机理。
引用本文:    
栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
LI Qi, HU Kui, YU Caihua, ZHANG Taoli, WANG Dandan. Molecular Dynamics Mechanism Study of the Interaction Between Polyethylene and Asphalt. Materials Reports, 2023, 37(5): 21080176-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080176  或          http://www.mater-rep.com/CN/Y2023/V37/I5/21080176
1 Lau W, Shiran Y, Bailey R M, et al. Science, 2020, 369, 1455.
2 Geyer R, Jambeck J R, Law K L. Science Advances, 2017, 3, 1.
3 Jambeck J R, Geyer R, Wilcox C, et al. Science, 2015, 347(6223), 768.
4 Yan K Z, Li H L, Hong Z, et al. Journal of Builiding Materials, 2022, 25(4), 408(in Chinese).
颜可珍, 李慧丽, 洪哲, 等. 建筑材料学报, 2022, 25(4), 408.
5 Sun D, Lin T, Zhu X, et al. Computational Materials Science, 2016, 114, 86.
6 Qu X, Ding H Y, Wang C, et al. Materials Reports, 2022, 36(19), 21050106(in Chinese).
屈鑫, 丁鹤洋, 王超, 等. 材料导报, 2022, 36(19), 21050106.
8 Li D D, Greenfield M L. Fuel, 2014, 115, 347.
9 Chen Z X, Pei J Z, Liu R, et al. Construction and Building Materials, 2018, 189, 695.
10 Xu P. Modeling and Analysis of molecular dynamics for characterizing asphalt-aggregate interaction. Masters Thesis, Chang'an University, China, 2013(in Chinese).
徐霈. 基于分子动力学的沥青与集料界面行为虚拟实验研究. 硕士学位论文, 长安大学, 2013.
11 Guo M. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate. Ph. D. Thesis, Harbin Institute of Technology, China, 2017(in Chinese).
郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究. 博士学位论文, 哈尔滨工业大学, 2017.
12 Du Z, Zhu X. Transportation Research Record Journal of the Transportation Research Board, 2019, 2673(4), 500.
13 Yu C H, Hu K, Chen G X, et al. Journal of Zhejiang University-Science A, 2021, 22(7), 528.
14 Hu K, Yu C H, Yang Q L, et al. Materials & Design, 2021, 208, 109901.
15 Cheng P F, Yang Z H, Zhang Z M, et al. Materials Reports, 2022, 36(9), 21020100(in Chinese).
程培峰, 杨宗昊, 张展铭, 等. 材料导报, 2022, 36(9), 21020100.
16 Xin X, Su L P, Liang M, et al. Materials Reports B:Research Papers, 2020, 34(9), 18060(in Chinese).
辛雪, 苏林萍, 梁明, 等. 材料导报:研究篇, 2020, 34(9), 18060.
17 Wang P, Dong Z J, Tan Y Q, et al. Energy Fuels, 2014, 29(1), 112.
18 Yu C H, Hu K, Chen Y J, et al. Molecular Simulation, 2021, 47(13-15), 1037.
[1] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[2] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[3] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[4] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[5] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[6] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[7] 屈鑫, 丁鹤洋, 王超, 刘玉, 汪海年. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022, 36(19): 21050106-6.
[8] 马秋菊, 童路, 汪丽莉, 宓一鸣, 赵新新. P2-NaxCoO2材料Ca掺杂性质的第一性原理研究[J]. 材料导报, 2022, 36(12): 21010083-6.
[9] 翁盛槟, 陈晶晶, 周建强, 林晓亮. 磨粒刮擦铝膜的亚表层磨损机制纳观探究[J]. 材料导报, 2022, 36(1): 20110027-7.
[10] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[11] 杨进波, 赵钲洋, 尹航. 基于分子动力学的C-S-H凝胶性能研究进展[J]. 材料导报, 2021, 35(5): 5095-5101.
[12] 黄伟玲, 陈晶晶. 多晶CoNiCrFeMn高熵合金塑性变形原子尺度分析[J]. 材料导报, 2021, 35(24): 24107-24112.
[13] 张晓博, 刘承军, 姜茂发. 分子动力学模拟在冶金熔渣中的应用进展[J]. 材料导报, 2021, 35(21): 21099-21104.
[14] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[15] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed