Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21060264-5    https://doi.org/10.11896/cldb.21060264
  高分子与聚合物基复合材料 |
不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟
曹晶晶, 张玉迪, 邓玉媛, 徐新宇*
辽宁石油化工大学石油化工学院,辽宁 抚顺 113001
Molecular Dynamics Simulation of Carbon Nanotube Grafted Polyimide Composites of Different Sizes
CAO Jingjing, ZHANG Yudi, DENG Yuyuan, XU Xinyu*
School of Petrochemical Engineering,Liaoning Shihua University,Fushun 113001,Liaoning,China
下载:  全 文 ( PDF ) ( 9204KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用分子模拟软件Materials Studio建立了聚酰亚胺(PI)模型、不同直径的多壁碳纳米管模型(MWCNT)、不同长度的多壁碳纳米管模型(MWCNT)以及MWCNT/PI复合材料模型,探究了不同尺寸的MWCNT对MWCNT/PI复合材料模型的力学性能和玻璃化转变温度(Tg)的影响。计算结果表明,当加入长度为10~20 μm、直径为10~20 nm的MWCNT,复合材料MWCNT/PI-1的杨氏模量和剪切模量分别为24.935 4 GPa和7.977 GPa;加入直径为10~20 nm、长度大于50 μm的MWCNT后,复合材料MWCNT/PI-7的力学性能提高最为显著,杨氏模量和剪切模量分别为26.671 GPa和9.246 2 GPa。这表明MWCNT的直径越小或长度越长,即长径比增加,其与PI之间的相互作用力越强,从而可提高PI复合材料的力学性能,且MWCNT/PI的玻璃化转变温度升高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹晶晶
张玉迪
邓玉媛
徐新宇
关键词:  聚酰亚胺  碳纳米管  玻璃化转变温度  分子动力学模拟    
Abstract: In this paper, polyimide (PI) model and MWCNT/PI composite models were established by molecular simulation software Materials Studio, as well as MWCNT with different diameters and lengths . The effects of different sizes of MWCNT on mechanical properties and glass transition temperature (Tg) of MWCNT/PI composites were investigated. The results show that the young's modulus and shear modulus of MWCNT/ PI-1 composites are 24.935 4 GPa and 7.977 GPa, respectively, when the length of MWCNT is 10—20 μm and the diameter of MWCNT is 10—20 nm. When the MWCNT with the diameter of 10—20 nm and length over 50 μm was added, the mechanical properties of MWCNT/ PI-7 composites increased most significantly, and the Young's modulus and shear modulus of MWCNT/ PI-7 composites were 26.671 GPa and 9.246 2 GPa, respectively. The results show that if the diameter or length of MWCNT is smaller, which means the aspect ratio increases, the interaction force between MWCNT and PI will be stronger, and the mechanical properties and glass transition temperature of PI composites will increase.
Key words:  polyimide    carbon nanotubes    glass transition temperature    molecular dynamics simulation
发布日期:  2022-12-09
ZTFLH:  O631  
基金资助: 辽宁省教育厅项目(L2019001)
通讯作者:  *xuxinyu_2012@163.com   
作者简介:  曹晶晶,2021年6月于辽宁石油化工大学获得工学学士学位。现为辽宁石油化工大学石油化工学院硕士研究生,在徐新宇教授的指导下进行研究。目前主要研究领域为聚酰亚胺复合材料的制备及改性。发表科研论文2篇。
徐新宇,2009年7月于东北大学获得博士学位,现为辽宁石油化工大学副教授。主要研究方向为新型纳米材料/聚酰亚胺泡沫复合材料的研究。支持和参与完成国家和省级项目5项。发表科研论文30余篇。以第一完成人授权发明专利1项。
引用本文:    
曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
CAO Jingjing, ZHANG Yudi, DENG Yuyuan, XU Xinyu. Molecular Dynamics Simulation of Carbon Nanotube Grafted Polyimide Composites of Different Sizes. Materials Reports, 2022, 36(23): 21060264-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060264  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21060264
1 Wang J , Jin X , Wu H. Carbon, 2017, 123, 502.
2 Yan Li, Fu L W, Chen Y. Journal of Applied Polymer Science, 2017, 134, 1.
3 Sengupta R, Bhattacharya M, Bandyopadhyay S. Progress in Polymer Science, 2011, 36, 638.
4 Gama N, Costa L C, Amaral V. Composites Science and Technology, 2017,138, 24.
5 Chen D, Zhu H, Liu T X. ACS Applied Material Interfaces, 2010, 2, 3702.
6 Baferani AH, Katbab A A, Ohadi A R. European Polymer Journal, 2017, 90, 383.
7 Zhu Q, Pan Q, Liu F. the Journal of Physical Chemistry C, 2011, 115, 17464.
8 Wu Z S, Sun Y, Tan Y Z. Journal of the American Chemical Society, 2012, 134, 19532.
9 Zhao Y, Hu C, Hu Y. Angewandte Chemie, 2012, 124, 11533.
10 Weng L, Wang T, Ju P H. Journal of Porous Materials, 2016, 24, 1.
11 Sengupta R, Bhattacharya M, Bandyopadhyay S. Progress in Polymer Science, 2011, 36, 638.
12 Tian H F, Yao Y Y, Liu W L. Polymer Testing, 2018, 67, 6874.
13 Li Y, Pei X l, Shen B. RSC Advances, 2015, 31, 24342.
14 Zhang M Y, Zhu X Y, Diao P H. Materials Science Forum, 2011, 21, 1237.
15 So H H, Cho J W, Sahoon N G. European Polymer Journal, 2007, 43, 3750.
16 Yuen S M, Ma C C, Lin Y Y. Composites Science and Technology, 2017, 67, 2564.
17 Hu S Q, Lyu Q, Wang Z K,et al. Acta Material Compositae Sinica, 2017, 34(1), 12 (in Chinese).
胡松青, 吕强, 王志坤, 等. 复合材料学报, 2017, 34(1), 12.
18 Zhu B K, Xie S H, Xu Z K. Composites Science and Technology, 2006, 66, 548.
19 Odegard G, Gates T, Wise K,et al. Composites Science and Technology, 2013, 63, 1671.
20 Zhang W Q, Li H, Sui G. Fiber Reinforced Plastics/Composites, 2018, 298(11), 17 (in Chinese).
张文卿, 李浩, 隋刚. 玻璃钢 /复合材料, 2018, 298(11), 17.
21 Hu L R, Zhou G T,Shen J X. Journal of Elastomers and Plastics, 2018, 28(2), 17 (in Chinese).
胡利如, 周桂桃, 沈建祥. 弹性体, 2018, 28(2), 17.
22 Jiang Q. Optimization of the interface between MWCNT and PI, molecular dynamics simulation and characterization of the structure and properties of their composites.Ph. D. Thesis, Donghua University, China, 2013 (in Chinese).
姜茜. MWCNT与PI界面优化、 分子动力学模拟及其复合材料的结构性能表征. 博士学位论文, 东华大学, 2013.
23 Sun G, Liu L , Wang J. Polymer Degradation and Stability, 2014, 110, 1.
24 Yang W L, Han W L, Wang Y. Acta Physica Sinica, 2017, 66(22), 291 (in Chinese).
杨文龙, 韩浚生, 王宇. 物理学报, 2017, 66(22), 291.
25 Lin J Q, Li X K, Yang W L,et al. Acta Physica Sinica, 2015, 64(12), 126202 (in Chinese).
林加齐,李晓康,杨文龙, 等. 物理学报, 2015, 64(12), 126202.
26 Yang M J, Deng B B, Ma Z. Materials Reports B:Research Papers, 2017, 31(6), 139 (in Chinese).
杨明君, 邓彬彬, 马占. 材料导报:研究篇, 2017, 31(6), 139.
27 Jiang Q , Tallury S S, Qiu Y. Carbon, 2014, 67, 440.
[1] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[2] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[3] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[4] 晋潞潞, 孙婷婷, 王连军, 江莞. n型掺杂不同管径碳纳米管薄膜的热电性能研究及其器件的制备[J]. 材料导报, 2022, 36(6): 21010212-5.
[5] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[6] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[7] 陈营, 魏燕红, 陈德平, 周红梅. 支化度对TAP-BFDA聚酰亚胺的性能影响研究[J]. 材料导报, 2022, 36(23): 21030027-5.
[8] 孙承月, 郭鑫鑫, 吴忧, 曹争利, 王豪, 琚丹丹, 王岩, 吴宜勇. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 22040378-8.
[9] 雷尧飞, 沈宇新, 艾素芬, 董薇, 陈浩, 张鹏飞, 刘佳. 聚酰亚胺气凝胶及其薄型复合材料的制备和性能研究[J]. 材料导报, 2022, 36(22): 22040282-4.
[10] 王楠, 白晶莹, 李家峰, 冯立, 徐俊杰, 赫艳龙, 董俊伟, 崔庆新, 张立功. 聚酰亚胺薄膜表面导电金属层化学沉积技术研究[J]. 材料导报, 2022, 36(22): 22030280-6.
[11] 杨传超, 徐鸿杰, 田国峰, 张静静, 高鸿, 卓航, 张梦颖, 战佳宇, 武德珍. 高强高模聚酰亚胺纤维的空间环境适应性研究及在航天领域的应用前景分析[J]. 材料导报, 2022, 36(22): 22040361-5.
[12] 张佰伦, 王凯, 李嘉辉, 钟海长, 张文魁, 章文献, 梁初. 锂离子电池用纳米碳材料研究进展[J]. 材料导报, 2022, 36(20): 21050286-13.
[13] 王延杰, 赵世界, 盛俊杰, 汝杰, 赵春, 李树勇. MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究[J]. 材料导报, 2022, 36(20): 21060183-9.
[14] 谭洁慧, 邓凌峰, 张淑娴, 李金磊, 王壮, 覃榕荣. 利用微量碳纳米管与石墨烯协同包覆提高LiCoO2正极材料的性能[J]. 材料导报, 2022, 36(2): 20100058-6.
[15] 朋小康, 黄兴文, 刘荣涛, 张永文, 张诗洋, 黄锦涛, 闵永刚. 光敏聚酰亚胺:低温固化设计策略[J]. 材料导报, 2022, 36(19): 21030016-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed