Please wait a minute...
材料导报  2022, Vol. 36 Issue (23): 21070282-6    https://doi.org/10.11896/cldb.21070282
  金属与金属基复合材料 |
胶接与钎焊铝蜂窝板力学性能研究
王文权1, 王苏煜1, 徐宇欣1, 张新戈1,*, 毕英超1, 石磊2
1 吉林大学材料科学与工程学院,长春 130025
2 浙江亚通焊材有限公司,杭州 310030
Mechanical Properties of Glued and Brazed Aluminum Honeycomb Panel
WANG Wenquan1, WANG Suyu1, XU Yuxin1, ZHANG Xinge1,*, BI Yingchao1, SHI Lei2
1 School of Materials Science and Engineering,Jilin University,Changchun 130025,China
2 Zhejiang Asia General Soldering & Brazing Material Co., Ltd.,Hangzhou 310030,China
下载:  全 文 ( PDF ) ( 13734KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 蜂窝板是一种起源于天然蜂巢的仿生复合材料,其中,铝蜂窝板作为一种优异的轻质高强结构,广泛应用于轨道交通与航空航天领域,如舱壁、机翼与卫星整流罩等。铝蜂窝板由铝合金面板与蜂窝芯层复合而成,因此研究面板与芯层的高效连接工艺势在必行。胶接铝蜂窝板在使用过程中易产生空鼓、起包、胶接面失效等缺陷,且蜂窝板各项性能均受到了胶黏剂性能的限制。使用钎焊铝蜂窝板替代胶接铝蜂窝饭可以更好地发挥蜂窝结构的性能优势。本研究对比了相同尺寸规格下胶接与钎焊铝蜂窝板的平压、剪切和滚筒剥离性能及失效形式的差异,为不同工况条件下铝蜂窝板复合结构的连接工艺与失效研究提供了理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王文权
王苏煜
徐宇欣
张新戈
毕英超
石磊
关键词:  铝蜂窝板  胶接  钎焊  力学性能  失效形式    
Abstract: Honeycomb panel is a kind of bionic composite material originated from natural honeycomb nests. As an excellent light-weight and high-strength structure, aluminum honeycomb panel has been widely used in transportation and aerospace applications,such as bulkheads, wings and satellite fairings, etc. Aluminum honeycomb panels consist of aluminum alloy skins and honeycomb core, which are bonded together to form sandwich structures, and the efficient bonding technique has become key issue. The glued aluminum honeycomb panel is prone to failure of the glued surface during engineering operation, resulting in defects such as hollowing and bagging, and mechanical properties of the honeycomb panel are limited to the performance of the adhesive. Adopting brazed aluminum honeycomb panels instead of glued aluminum honeycomb is a way to better play the superiority of honeycomb structure. This study compared the mechanical properties of axial compression, shear and roller peeling as well as the failure modes of glued and brazed aluminum honeycomb panel specimens at the same size. This research can provide a theoretical guidance for the bonding technique and failure analysis of aluminum honeycomb composite structures under different working conditions.
Key words:  aluminum honeycomb panel    glued    brazed    mechanical properties    failure mechanism
发布日期:  2022-12-09
ZTFLH:  TG454  
  TG495  
  TB331  
基金资助: 吉林省科技发展计划项目( 20200401034GX);吉林省发改委产业技术研究与开发专项(2020C029-1)
通讯作者:  *zhangxinge@jlu.edu.cn   
作者简介:  王文权,1994年获得吉林工业大学学士学位,2001年获得吉林大学硕士学位,2005年获得吉林大学工学博士学位,现任吉林大学材料科学与工程学院教授、博士研究生导师。长期从事材料连接和材料表面改性领域的教学和科研工作。2010—2012年在长春轨道客车股份有限公司博士后工作站工作,2009 年在德国亚琛大学表面工程研究所任访问学者,2007年在韩国釜山国立大学材料连接实验室任访问学者。发表了SCI/EI检索论文50余篇,负责完成科研项目20余项,授权发明专利10余项。
张新戈,2004年获得吉林大学学士学位,2006年获得哈尔滨工业大学硕士学位,2011年获得哈尔滨工业大学博士学位,现任吉林大学材料科学与工程学院副教授、博士研究生导师,长期从事新材料连接和增材制造领域的教学和科研工作。发表了SCI/EI检索论文30余篇,授权发明专利5项。
引用本文:    
王文权, 王苏煜, 徐宇欣, 张新戈, 毕英超, 石磊. 胶接与钎焊铝蜂窝板力学性能研究[J]. 材料导报, 2022, 36(23): 21070282-6.
WANG Wenquan, WANG Suyu, XU Yuxin, ZHANG Xinge, BI Yingchao, SHI Lei. Mechanical Properties of Glued and Brazed Aluminum Honeycomb Panel. Materials Reports, 2022, 36(23): 21070282-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070282  或          http://www.mater-rep.com/CN/Y2022/V36/I23/21070282
1 Jen Y M. International Journal of Fatigue, 2008, 30(6), 1103.
2 Mogilski M.Materials, 2020, 13(24), 5807.
3 Zuhri M Y M, Guan Z W.Composites Part B, 2014, 58, 1.
4 Lan X K. Aerospace Science and Technology, 2019, 87, 37.
5 Ashab A S M, Ruan D, Lu G, et al.Materials & Design, 2015, 74, 138.
6 Jen Y M, Teng F L, Teng T C.Materials & Design 2014, 54, 805.
7 Li X, Lu F, Zhang Y, et al.Materials & Design, 2020, 194, 108900.
8 Sun G, Huo X, Chen D, et al.Materials & Design, 2017, 133, 154.
9 Rajkumar S.Materials Today: Proceedings, 2021, 37, 1140.
10 Crupi V, Epasto G, Guglielmino E. International Journal of Impact Engineering, 2012, 43, 6.
11 Kee P J, Thayamballi A K, Sung K G.Thin-Walled Structures, 1999, 35, 205.
12 Zhang Y, Yan L, Zhang W, et al. Composites Part B: Engineering, 2019, 171, 192.
13 Harizi W, Anjoul J, Santamaría A A, et al. Composite Structures, 2021, 262, 113590.
14 Jen Y M, Ko C, Lin H. International Journal of Fatigue, 2009, 31(3), 455.
15 Kanny K, Mahfuz H, Thomas T, et al. Polymers & Polymer Composites, 2004, 12(7), 551.
16 Veazie D R, Robinson K R, Shivakumar K. Composites Part B: Engineering, 2004, 35(6-8), 461.
17 Soni S M, Gibson R F, Ayorinde E O.Composites Science and Technology, 2009, 69(6), 829.
18 Jen Y M, Lin H B. Materials & Design, 2013, 45, 393.
19 Jiang L, Xiao S, Zhang J, et al. Metals, 2020, 10(11), 1544.
20 Peng M J, Sun Y, Yao J, et al.Advanced Materials Research, 2010, 168-170, 1046.
21 Nadkarni I, Satpute P. Materials Today: Proceedings, 2021, 38, 313.
22 Daniel I M, Gdoutos E E, Abot J L, et al. Journal of Thermoplastic Composite Materials, 2003, 16(4), 345.
23 Lee H S, Hong S H, Lee J R. Journal of Materials Science, 2002, 37(6), 1265.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[9] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[10] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[14] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[15] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed